Mettre en œuvre efficacement la situation-problème et les activités géométriques à l’école primaire
L’Initiative francophone pour la formation à distance des maîtres (IFADEM) aux Comores est un partenariat entre le ministère de l’Éducation nationale, de l’Enseignement et de la Recherche, l’Agence universitaire de la Francophonie (AUF) et l’Organisation internationale de la Francophonie (OIF). IFADEM aux Comores est soutenue par l’Union européenne.

http://www.ifadem.org

SOUS LA SUPERVISION DE :

Monsieur Saidhoussen Said Abdou Nour, Doyen de l’Inspection Générale de l’Éducation Nationale (IGEN);

CE LIVRET A ÉTÉ CONÇU PAR :

Experts techniques d’IFADEM :

GELIS Jean-Michel : Ancien maître de conférences en sciences de l’éducation (TICE-didactique des mathématiques), Université de Cergy-Pontoise, expert IFADEM.
KANE Soumaïla : Secrétaire exécutif d’IFADEM-Côte d’Ivoire.

Expert national :

ABDOULHAMDID Ali : Maître de conférences, doyen de la Faculté des Lettres de l’Université des Comores.

Coordonnateur de l’équipe de rédaction :

AMBOINE Darkaoui : Inspecteur général de l’Éducation nationale.

Rédacteurs :

BOIHHERËI Mlamali :Inspecteur général de l’Éducation nationale.
HAMADI Ali Youssouf : Inspecteur pédagogique du primaire.
SOIDIK Hafsootie Halim : Chargée du suivi évaluation à la Direction générale de la politique et des programmes d’enseignement au ministère de l’Éducation nationale des Comores.

CORRECTIONS :

AURÈLE BALTA

MISE EN PAGE :

Alexandre LOURDEL

L’utilisation du genre masculin dans les énoncés du présent Livret a pour simple but d’alléger le texte : elle est donc sans discrimination à l’égard des femmes.

Ce Livret adopte les normes de la nouvelle orthographe (http://www.nouvelleorthographe.info).

Les contenus pédagogiques de ce livret sont placés sous la licence Creative commons Attribution - Partage dans les mêmes conditions 4.0 International (CC BY-SA 4.0).

http://fr.creativecommons.org

Première édition : 2017
Mettre en œuvre efficacement la situation-problème et les activités géométriques à l’école primaire
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRÉFACE</td>
<td>8</td>
</tr>
<tr>
<td>SIGLES ET ABRÉVIATIONS</td>
<td>10</td>
</tr>
<tr>
<td>INTRODUCTION GÉNÉRALE</td>
<td>12</td>
</tr>
<tr>
<td>SÉQUENCE 1 : CONCEVOIR ET TRAITER LES SITUATIONS-PROBLÈMES</td>
<td>14</td>
</tr>
<tr>
<td>CONSTAT</td>
<td>15</td>
</tr>
<tr>
<td>OBJECTIFS</td>
<td>16</td>
</tr>
<tr>
<td>DIAGNOSTIC</td>
<td>17</td>
</tr>
<tr>
<td>1. Généralités sur la situation-problème</td>
<td>17</td>
</tr>
<tr>
<td>2. Rédaction d’une situation-problème</td>
<td>18</td>
</tr>
<tr>
<td>3. Traitement d’une situation-problème</td>
<td>19</td>
</tr>
<tr>
<td>4. Commentaires</td>
<td>21</td>
</tr>
<tr>
<td>MÉMENTO</td>
<td>22</td>
</tr>
<tr>
<td>1. Qu’est-ce qu’une situation-problème</td>
<td>22</td>
</tr>
<tr>
<td>2. Approche par les compétences, caractéristiques des situations-problèmes</td>
<td>22</td>
</tr>
<tr>
<td>3. L’intérêt des situations-problèmes dans la vie de tous les jours</td>
<td>23</td>
</tr>
<tr>
<td>4. Les champs d’application des situations-problèmes</td>
<td>23</td>
</tr>
<tr>
<td>5. La résolution d’une situation-problème utilisant des nombres</td>
<td>24</td>
</tr>
<tr>
<td>DÉMARCHE MÉTHODOLOGIQUE</td>
<td>25</td>
</tr>
<tr>
<td>1. Conception d’une situation-problème</td>
<td>25</td>
</tr>
<tr>
<td>1.1. Rédaction de l’énoncé</td>
<td>25</td>
</tr>
<tr>
<td>1.1.1. Démarche</td>
<td>25</td>
</tr>
<tr>
<td>1.1.2. Exemple de situation-problème</td>
<td>25</td>
</tr>
<tr>
<td>1.2. Formulation des consignes</td>
<td>26</td>
</tr>
<tr>
<td>1.2.1. Démarche</td>
<td>26</td>
</tr>
<tr>
<td>1.2.2. Exemples de consignes</td>
<td>26</td>
</tr>
</tbody>
</table>
2. Traitement d’une situation-problème ... 27
 2.1. Étapes de résolution d’une situation-problème ... 28
 2.1.1. L’étape de découverte ... 28
 2.1.2. L’étape de pré-résolution ... 28
 2.1.3. L’étape de résolution ... 28
 2.1.4. L’étape d’objectivation .. 29
 2.1.5. L’étape d’intégration ... 29
 2.2. Exemple de traitement d’une situation-problème .. 30
 2.2.1. L’étape de découverte ... 30
 2.2.2. L’étape de pré-résolution ... 31
 2.2.3. L’étape de résolution ... 31
 2.2.4. L’étape d’objectivation .. 31
 2.2.5. L’étape d’intégration ... 32

ACTIVITÉS .. 33
1. S’exercer à concevoir des activités pour les apprenants .. 33
2. Exemples d’activités pour les élèves .. 37

CORRIGÉS .. 40
1. Corrigés du diagnostic ... 40
2. Corrigés des activités .. 43

BILAN .. 53

SÉQUENCE 2 : CONNAITRE ET EXPLOITER LES OBJETS GÉOMÉTRIQUES, LEURS PROPRIÉTÉS ET LES INSTRUMENTS ... 56

CONSTAT ... 57

OBJECTIFS .. 58

DIAGNOSTIC .. 59
1. Instruments ... 59
2. Vocabulaire .. 60
SOMMAIRE

3. Instruments et propriétés .. 61
4. Commentaires .. 65

MÉMENTO ... 66
1. Introduction .. 66
2. Objets mathématiques et propriétés .. 67
 2.1. Point ... 67
 2.2. Ligne .. 67
 2.3. Droite, demi-droite, segment .. 67
 2.4. Angle .. 69
 2.5. Cercle .. 71
 2.6. Polygone ... 71
 2.7. Triangles .. 72
 2.8. Quadrilatères ... 74
3. Conditions nécessaires et conditions suffisantes 77

DÉMARCHE MÉTHODOLOGIQUE ... 79
1. Précisions terminologiques ... 79
2. Support de dessin .. 79
3. Manipulation des instruments .. 82
 3.1. Compas : tracés de cercle .. 82
 3.2. Équerre : tracés de perpendiculaires (avec l’aide de la règle) 84
 3.3. Règle : tracés de segments, droites et demi-droites 86
 3.4. Règle graduée : mesure de distance et tracé d’un point sur une droite à une distance donnée d’un autre 88
 3.5. Rapporteur : tracés d’angles de mesures données 90
 3.6. Règle et équerre : tracé de parallèles à une droite 98
4. Constructions à l’aide des instruments 99
 4.1. Constructions simples ... 100
 4.2. Exemple de constructions complexes 105
5. Éléments didactiques .. 108
 5.1. Instruments et niveaux de classe 108
 5.2. Utilisation des instruments au tableau devant la classe 108
 5.3. Identification de figures simples dans des figures complexes ... 109
Le Ministère de l’Éducation Nationale de l’Union des Comores a signé, en novembre 2016, avec l’Organisation Internationale de la Francophonie (OIF) et l’Agence Universitaire de la Francophonie (AUF), un Accord-cadre relatif à l’expérimentation de l’Initiative francophone pour la formation à distance des maîtres (IFADEM), en vue d’améliorer les compétences professionnelles des enseignants de l’élémentaire, afin de :

– favoriser l’existence d’un enseignement de qualité dans un environnement multilingue ;
– rendre plus attractive la formation continue en favorisant la valorisation de la formation.

Dans cette optique, un diagnostic a été effectué, et a conduit à cibler, comme domaines de base, la compréhension et la production du français langue d’enseignement, les mathématiques pour l’ouverture à l’enseignement scientifique et technique, le tout à travers le perfectionnement du métier de l’enseignant.

Des livrets ont ainsi été élaborés, et les encadreurs (inspecteurs et conseillers) pédagogiques formés comme tuteurs dans la démarche IFADEM, dans la perspective de la formation de tous les enseignants de l’élémentaire au cours de l’année scolaire 2017-2018, au niveau de toutes les Circonscriptions d’inspection pédagogique régionales (CIPR).

Nous invitons par conséquent tous les acteurs et toutes les institutions directement concernés par cette démarche à s’y engager entièrement, et à faire preuve de bonne volonté, pour permettre l’amélioration de la qualité des apprentissages des enfants comoriens. Il s’agit particulièrement :

– des enseignants, intervenant aussi bien dans les écoles publiques que privées ;
– des encadreurs pédagogiques ;
– des directeurs des écoles publiques et privées ;
– des syndicats des enseignants ;
– des coordinations des écoles privées ;
– des Commissariats en charge de l’Education dans les Îles Autonomes (CEIA) ;

de l’Inspection Générale de l’Education Nationale (IGEN), chargée du dispositif global de formation continue des enseignants.

Notre gratitude va à l’endroit de tous les partenaires techniques et financiers, et en particulier l’OIF, l’AUF et l’Union Européenne, pour leurs contributions précieuses et multiformes en vue de l’aboutissement de ce projet ô combien important pour le système éducatif comorien.

Nous nous félicitons également du précieux accompagnement, par l’ensemble du dispositif IFADEM, de la mise en œuvre du projet.

Le Ministre de l’Éducation Nationale
Salim Mohamed Abdereylene
SIGLES ET ABRÉVIATIONS
AUF Agence universitaire de la Francophonie
APC Approche par compétences
CP Cours préparatoire
CP1 Cours préparatoire 1re année
CP2 Cours préparatoire 2e année
CE Cours élémentaire
CE1 Cours élémentaire 1re année
CE2 Cours élémentaire 2e année
CIPR Circonscription d’inspection pédagogique régionale
CM Cours moyen
CM1 Cours moyen 1re année
CM2 Cours moyen 2e année
EPP École primaire publique
IFADEM Initiative francophone pour la formation à distance des maîtres
IGEN Inspection générale de l’Éducation nationale
Ma-Mwé Madji na Mwendjé (littéralement, eau et électricité); société nationale de l’eau et de l’électricité
MEN Ministère de l’Éducation nationale
OIF Organisation internationale de la Francophonie
INTRODUCTION
GÉNÉRALE
Le dispositif de la formation continue du système éducatif comorien a programmé des actions visant à accompagner les enseignants du primaire dans l’amélioration des pratiques de classe. Ces actions s’appuient traditionnellement sur des manuels et des guides pédagogiques.

Afin de mieux aider les instituteurs des Comores dans leurs activités d’enseignement/apprentissage, le pays a adhéré à l’Initiative francophone pour la formation à distance des maîtres (IFADEM). Dans ce cadre, quatre livrets ont été conçus relativement à l’expression orale, l’expression écrite, la mathématique et l’éthique, la déontologie et les valeurs.

Le présent livret est consacré aux mathématiques et plus précisément au renforcement des compétences méthodologiques des enseignants du primaire pour l’enseignement de cette discipline. En effet, l’enseignement des mathématiques dispensé actuellement au cycle primaire présente des faiblesses. Les enseignants déplorent l’insuffisance, voire l’absence d’outils pédagogiques et didactiques dans cette discipline, ce qui entraîne, pour faire face à cette situation, des démarches trop diversifiées qui dépendent des moyens propres et des capacités de pilotage de chaque établissement d’enseignement. Quant aux élèves, ils entretiennent avec les mathématiques des rapports difficiles, allant même jusqu’à en avoir peur.

L’objectif de ce livret est principalement d’aider les enseignants à mieux comprendre les difficultés auxquelles ils sont confrontés et à améliorer la formulation des situations-problèmes, l’accompagnement de leur résolution et la maîtrise de l’enseignement de la géométrie, de ses objets, de leurs propriétés et de la manipulation de ses instruments.
Séquence 1
CONCEVOIR ET TRAITER LES SITUATIONS-PROBLÈMES
Comme partout dans le monde, l’apprentissage des mathématiques en Union des Comores est considéré comme essentiel dans l’enseignement de base, au préscolaire comme au primaire. Les situations-problèmes jouent un rôle particulier dans cet enseignement.

Les compétences attendues mentionnent en effet qu’il s’agit d’« entraîner les élèves du primaire, dans la résolution de situations-problèmes, à la pratique d’une démarche scientifique et à développer progressivement des capacités de raisonnement, d’imagination et d’analyse critique ». Ces mêmes compétences stipulent également que l’objectif de la résolution de situations-problèmes est d’« amener les élèves à acquérir les bases d’une solide formation mathématique qui leur permettront d’analyser une situation, de vérifier des hypothèses et de les valider ou non à l’épreuve des faits ou du raisonnement ».

Malgré ces directives, les élèves comoriens éprouvent d’énormes difficultés à résoudre des situations-problèmes comme le révèlent les différentes observations faites dans les classes du primaire et les résultats à l’examen d’entrée en 6e. Beaucoup d’entre eux, pour diverses raisons, ne suivent pas les enseignements qui leur sont dispensés, et ont par conséquent une mauvaise représentation de la discipline des mathématiques, y compris des situations-problèmes. Ils se limitent ainsi aux données numériques et mettent de côté l’aspect sémantique du problème. Les observations de classes montrent que les enseignants eux-mêmes ont du mal à amener les élèves à résoudre des situations-problèmes avec aisance. Les enseignants omettent différents points essentiels à la mise en œuvre des situations-problèmes, tels que la prise en compte des ressources préalables, notamment les prérequis (comme la maitrise de la table de multiplication pour les opérations de multiplication et de division), la mise en situation, etc.

Les répétitions des enseignants ne favorisent pas l’implication des élèves dans les activités d’apprentissage. En effet, ces longues explications privent l’élève d’un temps personnel d’activité et de recherche, ce qui l’empêche de construire ou de consolider par lui-même les concepts étudiés et donc de les comprendre. Piaget affirmait : « ce qu’on enseigne à un enfant, on l’empêche de l’inventer et de l’apprendre ». Il avait ainsi pris conscience des conséquences néfastes que pouvaient induire sur l’apprentissage des explications trop précoces et sans temps suffisant de recherche laissé à l’élève. D’autres difficultés dans l’organisation des apprentissages sont à signaler. Par exemple, les enseignants ne parviennent pas toujours à identifier les erreurs des élèves et à mettre en place des remédiations adaptées. Les remédiations qu’ils proposent se limitent bien souvent à une simple répétition du cours précédent. Les éléments que nous venons d’exposer expliquent les difficultés observées chez les élèves dans la compréhension des consignes des situations-problèmes et la perte de temps occasionnée au moment de leur résolution.
1. Objectif général

L’objectif de cette séquence est d’aider l’enseignant à mieux concevoir des situations-problèmes et à mieux accompagner les élèves pour leur résolution.

2. Objectifs spécifiques

Il s’agit d’amener l’enseignant à :

- concevoir, de manière contextualisée, des situations-problèmes adaptées à l’environnement et au vécu des élèves ;
- savoir organiser les différentes étapes du traitement d’une situation-problème ;
- développer chez les élèves un esprit de recherche face à une situation-problème.
Les autotests qui suivent vont te permettre de t’autoévaluer et de situer ton niveau de maîtrise des situations-problèmes, du point de vue de leur conception et de leur mise en œuvre. Les commentaires en fin de diagnostic te donnent quelques indications pour t’aider à te situer et à remédier à tes manques éventuels.

1. GÉNÉRALITÉS SUR LA SITUATION-PROBLÈME

► Autotest 1

Dis si c’est vrai (V) ou faux (F). Coche la bonne case.

<table>
<thead>
<tr>
<th>Une situation-problème, c’est…</th>
<th>V</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. un problème facile à résoudre.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. un problème ardu.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. un problème adapté au vécu des élèves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. un problème qui exige un raisonnement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. un problème avec des pièges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. l’ensemble des problèmes prévus dans le manuel.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

► Autotest 2

Coche « Oui » si la formulation proposée s’applique aux situations-problèmes et « Non » dans le cas contraire.

<table>
<thead>
<tr>
<th>La situation-problème permet de/d’…</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. activer les capacités de résolution des élèves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. donner des définitions après mémorisation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. avoir du sens.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. résumer la leçon.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. faire naître un questionnement chez les élèves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. amener l’élève à élaborer une suite d’actions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

► Autotest 3

Un de tes collègues a présenté les situations suivantes à ses élèves. Coche « Oui » si la situation proposée est une situation-problème et « Non » dans le cas contraire. Si tu réponds « Non », justifie ta réponse en deux phrases au maximum.
<table>
<thead>
<tr>
<th>Situations</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pose et effectue les opérations suivantes :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 × 4 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>345 + 17 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 : 50 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ali possède 1 000 francs et veut compléter sa fourniture scolaire. Il achète un cahier de 96 pages à 250 francs et avec le reste il achète des pochettes transparentes qui coûtent chacune 50 francs. Combien de pochettes peut-il acheter ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Calcule la surface d’un carré de 65 mètres de côté.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **RÉDACTION D’UNE SITUATION-PROBLÈME**

► **Autotest 4**

Les éléments suivants sont présentés dans le désordre. Utilise-les, quitte à les reformuler, pour concevoir une situation-problème.

Arrivée – vol Ethiopian Airlines – 800 pèlerins comoriens – en provenance de la Mecque – 3 vols dont 2 ont le même nombre de passagers – et un troisième apportant 300 pèlerins – le nombre de passagers par vol – le 12 septembre. 1ᵉ vol à 15 heures, 2ᵉ vol à 18 heures et 3ᵉ vol à 21 heures

► **Autotest 5**

Rédige une situation-problème à partir des 5 informations suivantes.

1. Partage égal.
2. Concours d’orthographe organisé par la coopérative à l’école de Diboini.
3. Récompense du premier de chaque classe.
4. École composée de 6 classes.
5. Fourniture scolaire (6 dictionnaires, 60 cahiers de 192 pages et 120 stylos).
3. TRAITEMENT D’UNE SITUATION-PROBLÈME

Autotest 6

Voici une situation-problème :

Pour vendre la vanille verte à bon prix chez Amine Kalfane, il faut avoir une quantité supérieure ou égale à 500 kg. 3 cultivateurs mettent ensemble leur récolte : Mdoihoma 215 kg, Aboudou 285 kg et Mchangama 310 kg. Ils ont reçu la somme totale de 3 240 000 francs comoriens. Quelle est la part de chacun de ces 3 cultivateurs ?

Le tableau suivant présente les étapes de mise en œuvre de la situation-problème énoncée ci-dessus. Pour poursuivre la démarche, complète le tableau en formulant, pour chaque étape, au plus trois questions que tu peux poser à tes élèves, ainsi que les réponses attendues.

<table>
<thead>
<tr>
<th>N°</th>
<th>Étapes</th>
<th>Questionnements</th>
<th>Réponses attendues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Découverte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pré-résolution : relevé des données</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pré-résolution : interprétation des données</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Voici une situation-problème présentée à des élèves de CM :

Pour la fête de fin d’année, la maitresse achète 35 mètres de tissu à 3 500 francs le mètre, pour confectionner les robes des 12 filles de sa classe. La couturière lui conseille de rajouter encore 20 mètres. La confection d’une robe coûte 1 250 francs.

a. Combien de mètres de tissu doit acheter la maitresse en tout ?
b. Calculer le prix total à payer pour le tissu.
c. Combien doit payer chaque fille de la classe ?
d. Combien la maitresse doit-elle donner à la couturière ?

Pour résoudre cette situation-problème, le maitre propose, pour chaque question, des couples de grandeurs à associer à une opération à effectuer. On te demande de remplir le tableau ci-dessous, uniquement dans le cas de couples qui ne peuvent pas être associés par l’opération indiquée et pour lesquels tu cocheras la colonne « Non ». Explique pourquoi.

<table>
<thead>
<tr>
<th>Questions</th>
<th>Opérations</th>
<th>Couple</th>
<th>Non</th>
<th>Pourquoi ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Addition</td>
<td>Longueur/Longueur</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Prix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Multiplication</td>
<td>Quantité/Quantité</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Quantité</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. COMMENTAIRES

Les corrigés des autotests te sont proposés en dernière partie de la séquence. Évalue tes réponses et suis les recommandations ci-dessous.

- Si tu as répondu correctement à un tiers des questions, tu dois fournir beaucoup d’efforts pour t’approprier le contenu de la séquence.
- Si tu as répondu correctement à deux tiers des questions, tu as un niveau acceptable de maîtrise des contenus de la séquence, que tu dois renforcer par une appropriation des contenus non maîtrisés.
- Si tu as répondu correctement à plus de deux tiers des questions, tu as un bon niveau et tu peux réinvestir tes connaissances à travers la pratique.

Dans tous les cas, lorsque tu n’as pas réussi un autotest, il te faut identifier les contenus que tu ne maîtrises pas et les retravailler en te reportant au méméto et à la démarche méthodologique.
1. QU’EST-CE QU’UNE SITUATION-PROBLÈME ?

Une situation-problème est une activité mathématique. C’est une situation motivante créée par l’enseignant en vue d’activer les capacités de résolution de l’élève, en utilisant les données liées aux informations essentielles de l’énoncé. Elle peut être une situation de la vie quotidienne, contextualisée, que l’on soumet à l’élève.

Certains auteurs (De Vecchi et Carmona-Magnaldi, 2016) précisent qu’une situation-problème :
- est une situation initiale comportant certaines données ;
- impose un but à atteindre ;
- oblige à élaborer une suite d’actions ;
- mobilise une activité intellectuelle qui fait entrer dans une démarche de recherche, en vue d’aboutir à un résultat final.

Ce résultat est initialement inconnu et la solution n’est pas immédiatement disponible.

Les mêmes auteurs définissent une situation-problème par certains critères essentiels :
- avoir du sens (interpeller, impliquer l’apprenant qui ne se contente pas d’obéir, d’exécuter) ;
- être liée à un obstacle repéré, défini, considéré comme dépassable et dont les élèves doivent prendre conscience à travers l’émergence de leurs conceptions (représentations mentales) ;
- faire naître un questionnement chez les élèves (qui ne répondent plus aux seules questions du maître) ;
- correspondre à une situation complexe, pouvant ouvrir sur différentes réponses acceptables et sur différentes stratégies utilisables ;
- faire l’objet d’un ou de plusieurs moments de métacognition (analyse *a posteriori* de la manière dont les activités ont été vécues et du savoir qui a pu être intégré).

2. APPROCHE PAR LES COMPÉTENCES, CARACTÉRISTIQUES DES SITUATIONS-PROBLÈMES

Dans la discipline mathématiques, l’approche par compétences (APC) oriente l’enseignant sur la façon de faire acquérir aux élèves les savoirs, savoir-faire et savoir-être visés. Cette pédagogie recommande l’utilisation de situations-problèmes plutôt que le recours à des calculs décontextualisés impliquant des nombres sans signification.

Une situation-problème peut appartenir à une famille de situations et relever par exemple du réinvestissement des acquis ou de l’intégration, selon le niveau et la période de l’année scolaire.
On entend par **famille de situations**, des situations qui nécessitent l’utilisation de la même démarche pour parvenir à la solution.

Les situations-problèmes du **réinvestissement** des acquis sont soumises aux élèves pour des évaluations formatives au moment des apprentissages d’une leçon. Elles renforcent les acquisitions des savoirs.

Les situations-problèmes d’**intégration** sont présentées à la sixième semaine d’un cycle et intègrent les acquisitions des apprentissages des cinq semaines antérieures.

Cette démarche reste en conformité avec l’organisation des curriculums et des manuels officiels.

Exemple

Les situations faisant appel à des opérations d’addition de quantités de même nature constituent une famille de situations, à l’image des deux suivantes :

1. Maman va au marché avec 10 000 francs dans son portefeuille. Elle achète 1 kg de poisson à 2 500 francs, du manioc à 1 000 francs, des bananes à 2 000 francs et 2 kg de tomates à 1 800 francs. Combien a-t-elle dépensé en tout ?
2. Une fermière a ramassé 50 œufs le matin et 72 le soir dans son poulailler. Combien d’œufs a-t-elle ramassé dans la journée ?

3. **L’INTÉRÊT DES SITUATIONS-PROBLÈMES DANS LA VIE DE TOUS LES JOURS**

Dans sa vie quotidienne, l’élève fait face à des problèmes qui incluent les nombres, les mesures et l’espace. Il est donc nécessaire d’initier l’élève à trouver des solutions à ces problèmes de façon autonome et structurée. Ainsi, dans l’apprentissage des mathématiques, l’élève aura l’opportunité de construire des connaissances et des compétences, qu’il aura à réinvestir dans les diverses situations de sa vie.

4. **LES CHAMPS D’APPLICATION DES SITUATIONS-PROBLÈMES**

Les situations-problèmes s’appliquent à tous les domaines des mathématiques. Elles peuvent faire appel à :

– des questions de numération : lecture et écriture des nombres, comptage ;
– l’usage des opérations : addition, soustraction, multiplication et division ;
– l’usage des nombres décimaux : écriture, comparaison, calcul ;
– l’usage de la proportionnalité : comparaison, représentation, détermination et fractions ;
– des questions de géométrie : constructions, propriétés, instruments, mesures ;
– des questions sur les mesures et les grandeurs.

5. LA RÉSOLUTION D’UNE SITUATION-PROBLÈME UTILISANT DES NOMBRES

Pour résoudre une situation-problème impliquant des nombres, on utilise des données mathématiques qui vont être employées pour calculer. L’enseignant conduit les élèves à suivre la démarche suivante :

– Se faire une représentation mentale du contexte ;
– Identifier la signification des informations essentielles ;
– Trier les données utiles ;
– Opter pour le choix des opérations ;
– Hiérarchiser les opérations ;
– Effectuer les calculs ;
– Justifier l’exactitude et la pertinence des réponses obtenues.

Il revient à l’enseignant de faire le bilan de la séance, de valider la démarche et les réponses apportées.
La démarche méthodologique qui t’est présentée ici porte plus particulièrement sur les situations-problèmes faisant intervenir des nombres.

1. CONCEPTION D’UNE SITUATION-PROBLÈME

1.1. Rédaction de l’énoncé

1.1.1. Démarche

Pour concevoir une situation-problème :
– tu te situes par rapport au programme (curriculum) ;
– tu identifie l’objectif de la leçon ;
– tu identifie les compétences à développer chez l’élève au cours de la séquence ;
– tu passes à la rédaction de l’énoncé de la situation-problème.

Le problème est présenté sous forme de texte ou énoncé. Il est complété par une illustration (ou un dessin), un schéma, un graphique, des données numériques… Selon les cas, l’illustration peut avoir une importance primordiale. Au lieu de simplement accompagner le texte, elle peut en effet constituer en elle-même une situation, que des consignes complètent.

1.1.2. Exemple de situation-problème

L’exemple de situation-problème proposé concerne un savoir-faire de la semaine 18 du curriculum de CP2.

Son objectif général est de résoudre des situations-problèmes faisant appel à l’addition avec report, à la soustraction sans emprunt, à la moitié et au double dans les limites des nombres de 0 à 79.

Le texte et l’illustration qui suivent donnent le contexte général de la situation-problème proposée. Les consignes rédigées au paragraphe suivant complètent cette situation-problème.
1.2. Formulation des consignes

1.2.1. Démarche

Les consignes représentent, dans le processus d’enseignement/apprentissage/évaluation, un point clé, car leur exécution permet de construire les compétences attendues pour une bonne compréhension des mathématiques. Ce sont les orientations et les questions proposées qui interpellent directement l’élève, le poussent à effectuer les tâches prévues et à trouver la ou les solution(s) correspondante(s). La consigne cible le savoir visé par l’objectif de la séance. Notons que par souci de clarté, les consignes doivent être indépendantes les unes des autres.

Tu peux formuler la consigne sous différentes formes :
- sous forme affirmative : « Tu observes... », « Tu construis... », « Tu complètes... », etc.;
- sous forme interrogative : « Quelle est la nature de cette figure ? », « Comment peut-on construire deux droites parallèles ? », etc.;
- sous forme impérative : « Calcule... », « Trouve... », « Compare... », etc.

1.2.2. Exemples de consignes

Les trois consignes suivantes font partie de la même situation-problème. Le résultat trouvé en exécutant une consigne est éventuellement nécessaire pour répondre aux consignes qui la suivent. La formulation de ces consignes est volontairement variée pour illustrer ce qui a été dit au paragraphe précédent.
Consigne 1 :

Au départ du premier village, il y a 28 passagers dans le bus dont la moitié est constituée d’enfants. Combien y a-t-il de passagers adultes dans le bus?

Commentaire : La forme de cette consigne est interrogative. Les opérations en jeu sont ici la division et la soustraction.

Consigne 2 :

Au premier arrêt, 13 passagers descendent du bus et personne ne monte. Il y a maintenant passagers dans le bus.

Commentaire : La forme de cette consigne est affirmative. L’opération en jeu est ici la soustraction.

Consigne 3 :

Au deuxième et dernier arrêt avant le terminus, 18 passagers montent dans le bus et personne ne descend. Trouve le nombre de passagers transportés dans la journée.

Commentaire : La forme de cette consigne est impérative. L’opération en jeu est ici l’addition.

2. TRAITEMENT D’UNE SITUATION-PROBLÈME

Pour résoudre une situation-problème, les élèves doivent comprendre la situation, les questions posées et élaborer une démarche de recherche. Beaucoup d’entre eux ne sont pas capables de le faire en autonomie.

C’est ainsi que la simple donnée de l’énoncé d’une situation-problème sans autre explication ne suffit pas à assurer la mise au travail de la classe. Beaucoup d’élèves vont connaître des difficultés dans l’appropriation de la situation et dans la compréhension de ses consignes. Ils vont, en conséquence, se démobiliser rapidement et se désintéresser des tâches à réaliser.

Pour assurer la mise au travail de l’ensemble de la classe et l’implication de chacun dans la résolution de la situation-problème, il est nécessaire de respecter des étapes de résolution qui sont décrites dans les paragraphes suivants.
2.1. Étapes de résolution d’une situation-problème

2.1.1. L’étape de découverte

Le but de cette étape est de faire en sorte que chaque élève s’approprie le contexte de la situation-problème et puisse en construire une représentation.

Pour accompagner les élèves dans cette phase de découverte, tu peux :

– faire observer l’énoncé ;
– faire lire l’énoncé (lecture silencieuse) ;
– poser des questions de compréhension générale de l’énoncé ;
– expliquer les nouveaux mots de vocabulaire.

2.1.2. L’étape de pré-résolution

C’est une étape de travail individuel de l’élève. Elle consiste à :

– relever les données de l’énoncé ;
– distinguer les données utiles et inutiles ;
– les interpréter en vue de passer à l’étape de résolution.

Pour guider les élèves dans cette phase, tu peux :

– circuler dans la classe et vérifier les productions des élèves ;
– faire souligner les informations numériques ;
– faire découvrir ce que représente chaque information numérique.

2.1.3. L’étape de résolution

Pour aider les élèves, tu peux stimuler leur curiosité et les amener à réinvestir leurs acquis pour trouver la solution au problème. Pour cela :

– Tu amènes les élèves à se concentrer sur ce qu’ils cherchent (qu’est-ce que je sais ? qu’est-ce qu’on me demande ?) : chaque élève utilise tout son savoir et le matériel nécessaire pour élaborer une solution ;
– Tu joues le rôle de guide et de facilitateur ;
– Tu organises un travail en groupe et tu apportes des conseils ou des corrections si c’est nécessaire. Les interactions élève-élève sont prioritaires.

En pratique, tu reprendras avec les élèves les points de l’étape de pré-résolution qu’il s’agira d’approfondir et de dépasser pour finaliser la résolution. Les questions que tu poseras permettront ainsi aux élèves de/du :

– identifier les données numériques essentielles ;
– relever, classer et trier les données numériques ;
– retenir les données utiles ;
– dégager les opérations appropriées ;
– trouver la ou les solution(s) aux problèmes posés ;
– trouver la bonne formulation des solutions.

Pour résoudre le problème, tu fais interagir les élèves collectivement en classe entière ou lors de travaux en groupe.

Dans le travail de groupe :
– Tu répartis les élèves dans des groupes (de deux élèves ou plus) ;
– Tu fais identifier les informations par les élèves ;
– Tu reproduis au tableau noir un modèle de représentation ;
– Tu fais consigner le travail des élèves dans leur cahier.

Dans le travail collectif :
– Après des questions, tu confrontes les différentes propositions des groupes ;
– Tu appuies leurs choix et tu les soumets à la classe pour qu’elle donne son opinion ;
– Pendant cet échange, tu notes les informations recueillies ;
– Tu fais expliquer pourquoi tu ne peux pas garder une réponse,
– Tu fais contrôler par la classe la pertinence des diverses contributions ;
– Tu fais identifier par les élèves les différentes tâches qu’ils ont à faire, à l’aide de questions ouvertes.

2.1.4. L’étape d’objectivation

Cette étape vise à donner la possibilité aux élèves d’expliquer le processus par lequel ils passent pour résoudre la situation-problème. Il s’agit de leur faire prendre du recul sur leurs propres démarches, de leur permettre d’exprimer leurs procédures afin qu’ils puissent mieux se les approprier et éventuellement les réexploiter dans d’autres contextes.

2.1.5. L’étape d’intégration

Cette étape concerne une situation-problème semblable à la situation d’acquisition exposée ci-dessus. Le but de cette étape est d’évaluer les acquis des élèves.

À ce niveau, tu :
– vérifies que les connaissances visées sont bien acquises par les élèves, et que ces derniers se sont bien approprié la démarche proposée ;
– élabores un plan de remédiation pour ceux qui en ont besoin ;
– peux recourir à l’évaluation individuelle ou à la remédiation par groupe.
2.2. Exemple de traitement d’une situation-problème

Nous proposons ici un exemple de mise en œuvre d’une situation-problème qui illustre la démarche ci-dessus et que nous commentons brièvement.

2.2.1. L’étape de découverte

Les paragraphes ci-dessous mentionnent de façon synthétique les principales phases à observer.

► Tu demandes aux élèves de CE de lire silencieusement l’énoncé suivant et d’observer la situation qu’il introduit.

Au mois de juillet, Karim a travaillé dans un magasin 8 heures par jour. Il n’a pas travaillé les dimanches et les jours fériés. On lui a donné 500 francs par heure de travail. Combien a-t-il gagné à la fin de ce mois ?

<table>
<thead>
<tr>
<th>Magasin du Nord Moroni Oasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiche de pointage de : M. Karim Houmadi</td>
</tr>
<tr>
<td>Mois de : Juillet 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lundi</th>
<th>Mardi</th>
<th>Mercredi</th>
<th>Jeudi</th>
<th>Vendredi</th>
<th>Samedi</th>
<th>Dimanche</th>
<th>Heures de travail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1er</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fête de l’indépéndance et lendemain (férié)

Fait à Moroni le 2 aout 2017

L’employé

Le Gérant
Tu poses des questions d’aide à la compréhension.
- À quoi sert cette fiche de pointage ?
- Que représentent les dates en gras dans le calendrier, telles que le 2 ou le 6 juillet ?

2.2.2. L’étape de pré-résolution

Tu aides les élèves à relever les données numériques et non numériques de l’énoncé et à comprendre leur signification pour se préparer à la résolution du problème.
- Combien d’heures par jour Karim travaille-t-il ?
- Quelle somme gagne-t-il par heure ?
- À quoi sert le calendrier ?
- À quoi correspondent les dates 6 et 7 juillet dans ce calendrier ?

2.2.3. L’étape de résolution

Tu aides les élèves à repérer les données numériques essentielles, à les classer et à choisir les opérations à utiliser pour la résolution du problème.
- Combien de jours compte le mois de juillet ?
- Combien de jours de ce mois de juillet Karim n’a pas travaillé ?
- Comment peut-on trouver le nombre de jours pendant lesquels Karim a travaillé ?
- Comment peut-on trouver le nombre d’heures de travail de Karim pendant ce mois ?
- Comment peut-on trouver la somme que Karim a gagné durant le mois ?

Tu écris ces questions au tableau et tu gardes une ligne afin que les élèves mentionnent :
- la phrase solution ;
- l’opération à effectuer.

2.2.4. L’étape d’objectivation

Tu demandes aux élèves d’exprimer leurs procédures de résolution et la démarche entreprise pour trouver la solution.
- Comment avez-vous procédé pour trouver la solution ?
- Quels sont les données que vous avez calculées et dans quel ordre ?
2.2.5. L’étape d’intégration

► La notion à intégrer est le calcul du salaire d’un ouvrier payé à l’heure de travail.

Il s’agit de vérifier l’utilité de l’usage approprié de la multiplication dans la résolution d’une situation-problème.

\[
\text{Salaire du mois} = \text{Salaire horaire} \times \text{Nombre d’heures de travail du mois}
\]

Pour vérifier et remédier, tu demandes aux élèves de donner des exemples permettant de calculer des salaires. Ainsi, ils pourront se faire des représentations personnelles et bien intégrer la démarche.
1. S’EXERCER À CONCEVOIR DES ACTIVITÉS POUR LES APPRENANTS

► Activité 1

Cette activité porte sur la mise en œuvre d’une situation-problème.

On considère la situation-problème suivante, destinée à des élèves de CE1 :

Grand-mère partage équitablement 24 bananes entre ses 6 petits-enfants.
1. Combien de bananes aura chacun des petits-enfants ?
2. Combien de bananes lui reste-t-il ? Justifie ta réponse.

a. Pour chacune des 2 questions, indique les opérations qu’un élève de CE1 va utiliser.
b. Un élève répond 24 à la première question et 6 à la seconde. Comment expliques-tu ces réponses ? Décris brièvement 2 types de remédiations que tu peux mettre en place pour lui faire comprendre son erreur.
c. Dans la phase de découverte, si tu devais insister sur une seule information de la situation, laquelle choisirais-tu ? Pour assimiler cette information, indique 3 questions que tu pourrais poser aux élèves.
d. Décris en quelques phrases les 3 étapes principales que devrait suivre un élève pour résoudre la situation-problème à ce niveau de classe, depuis la procédure de résolution elle-même jusqu’à la présentation du résultat.

Un travail en groupe te semble-t-il souhaitable au début de la phase de résolution ? Justifie ta réponse en 2 phrases au plus.

► Activité 2

Cette activité porte sur la mise en œuvre d’une situation-problème.

On considère la situation-problème suivante, destinée à des élèves de CM1 :

La mairie de Moroni accorde habituellement, par mois, 25 autorisations d’utilisation des places publiques pour des cérémonies de mariage.
Au mois de juillet, l’arrivée des « Je-viens » a permis de doubler le nombre d’autorisations.
1. Combien y a-t-il eu d’autorisations accordées pendant ce mois ?
2. Au mois de mai, il n’y a eu aucune autorisation à cause du ramadan. Calculer le nombre d’autorisations accordées pendant toute l’année.
On te demande de formuler les questions à poser aux élèves pour les aider à résoudre la situation durant les différentes phases de la démarche :

- Phase de découverte ;
- Phase de pré-résolution ;
- Phase de résolution ;
- Phase d’intégration.

Pour chaque phase, tu proposeras entre 1 et 5 questions.

► Activité 3

Cette activité porte sur la conception d’une situation-problème.

On considère les données suivantes, qu’un enseignant rassemble en vue de concevoir une situation-problème :

La classe a un effectif de 35 élèves. Les élèves organisent un jeu. Ils constituent pour cela plusieurs équipes.
Une équipe se compose de 8 joueurs. 3 élèves se consacrent à l’arbitrage.

a. À partir de ces informations, on te demande de rédiger un énoncé de situation-problème qui intègre l’usage de la division avec reste au CE1. Tu peux ajouter d’autres informations si tu le souhaites.
b. Cite 3 difficultés principales de cette situation. Propose un moyen d’aider les élèves à les surmonter.
c. Décris brièvement 3 procédures de résolution possibles, justes ou erronées, que les élèves peuvent élaborer. Ensuite, cite 2 remédiations que tu peux mettre en place pour aider les élèves à comprendre la situation.
d. À ton avis, quelles sont les modalités de travail, individuelle ou en groupe, envisageables pour les élèves ? Justifie à chaque fois ta réponse en 2 ou 3 phrases. Pour finir, cite 3 points importants qui caractérisent l’attitude à avoir pour que les élèves travaillent et produisent.

► Activité 4

Cette activité porte sur la mise en œuvre d’une situation-problème.

Voici deux exercices types qu’un de tes collègues enseignants voudrait donner à ses élèves :

Exercice 1 : Il est 10h. Représente cette heure sur le réveil.
Indique l’heure qu’il sera sur le réveil dans une demi-heure, puis représente-la sur le réveil.
Exercice 2 : Il est 11 h 30. Représente cette heure sur le réveil.
Indique l’heure qu’il sera sur le réveil quand la grande aiguille aura fait un quart de tour, puis représente-la sur le réveil.

Ton collègue annonce qu’il poursuit 3 objectifs :
1. La révision de la lecture et de l’écriture de l’heure sur un réveil.
2. Les durées exprimées en :
 – fraction d’heures (exemple : une demi-heure);
 – fraction de tour de la grande aiguille (exemple : un demi-tour).
3. Le calcul d’une nouvelle heure après ajout d’une durée.

Tu voudrais à ton tour aborder ces exercices avec tes élèves. Pour affiner ta préparation, réponds aux questions suivantes :

a. L’objectif 2 est-il intéressant pour les élèves ? Réponds en donnant un argument pour chaque forme d’expression des durées (fraction d’heure, fraction de tour de la grande aiguille).

b. Les exercices 1 et 2 sont décontextualisés, c’est-à-dire qu’ils ne font référence à aucune situation concrète. Quel contexte peut-on proposer aux élèves ? Rédige les exercices 1 et 2 en tenant compte de ce contexte.

c. Quels sont les prérequis que doivent connaître tes élèves sur le fonctionnement du réveil ?

d. Quels matériels individuels peux-tu prévoir pour que les élèves puissent marquer les heures sur le cadran du réveil et travailler les objectifs visés ? Tu proposeras plusieurs possibilités de matériels individuels et tu donneras les avantages ou inconvenients principaux de l’ensemble de ces matériels.

e. Quels matériels peux-tu prévoir à destination de l’enseignant pour qu’il puisse montrer une heure marquée sur un cadran à toute la classe et mieux illustrer le fonctionnement du réveil ?

f. On voudrait faire travailler les élèves sur des situations du type des exercices 1 et 2 de l’énoncé. Propose des étapes possibles (collectives, individuelles) avec à chaque fois les contenus et modalités de travail.

Activité 5

Cette activité porte sur la conception d’une situation-problème au CM.

On considère les données suivantes qu’un enseignant exploite en vue de concevoir et de mettre en œuvre une situation-problème :

Voici le tableau des notes que les élèves ont obtenues à l’examen d’entrée en 6e.

<table>
<thead>
<tr>
<th>Noms et prénoms</th>
<th>Maths</th>
<th>Composition française</th>
<th>Éveil</th>
<th>Orthographe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatima Mondoha</td>
<td>07</td>
<td>13,5</td>
<td>08,5</td>
<td>08</td>
</tr>
<tr>
<td>Djoumoi Ali</td>
<td>12</td>
<td>13</td>
<td>09</td>
<td>09</td>
</tr>
<tr>
<td>Salima Zahahé</td>
<td>13,5</td>
<td>10</td>
<td>08,5</td>
<td>15</td>
</tr>
<tr>
<td>Karim Oussène</td>
<td>16</td>
<td>12,5</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Saidou Mdoihoma</td>
<td>07,5</td>
<td>10,5</td>
<td>11</td>
<td>09</td>
</tr>
</tbody>
</table>

a. Dans cette question, on s’intéresse au fait de ranger les élèves en fonction de leurs résultats à l’examen d’entrée en 6e.
 – Comment peux-tu orienter les élèves à élaborer la bonne réponse ?
 – Quelles sont les erreurs que peuvent commettre les élèves ?

b. Dans cette question, on s’intéresse à la détermination des 3 meilleurs élèves en composition française.
 Comment conduire l’ensemble de la classe à passer du fait de ranger selon les résultats à l’examen au fait de ranger selon les résultats d’une seule discipline ?

c. Quel est le principal enseignement que peut retenir un élève de cet exercice ?

▶ Activité 6

La situation présentée dans cette activité te donne quelques éléments pour concevoir et mettre en œuvre une situation-problème qui porte sur les horaires et des durées.

Voici une situation-problème avec des horaires et des durées (CM2) :

L’avion inter-iles Air effectue un aller et retour pour assurer le déplacement Ngazidja-Ndzouani. Il décolle de Hahaya à 7h30 et arrive à Wani à 8h00. Il fait le plein de carburant, débarque ses passagers, en embarque de nouveaux et décolle pour le retour 35 minutes après son arrivée.
1. À quelle heure reviendra l’avion à Hahaya ?
2. Combien de temps aura duré l’aller-retour ?
Pour guider tes élèves dans la résolution de cet exercice, réponds aux questions suivantes :

a. Quels sont les compétences que l’on peut travailler avec cette situation ?
b. Quels sont les informations utiles à distinguer dans l’énoncé en lien avec le voyage ?
c. On s’intéresse ici aux procédures d’ajout d’une durée à un horaire. Donne deux façons d’ajouter à l’horaire 10 h 55 une durée de 35 min.
d. On s’intéresse ici aux procédures de soustraction d’une durée à un horaire. Donne deux façons de soustraire à l’horaire 10 h 15 une durée de 45 min.

► Activité 7

Après t’avoir guidé sur la conception et la mise en œuvre des situations-problèmes, nous te proposons cette activité afin de vérifier le degré d’assimilation des compétences dans les domaines sus cités.

Tu proposes l’énoncé d’une situation-problème au niveau CM1 et des éléments de mise en œuvre, qui te permettront d’évaluer la bonne maîtrise des calculs par les élèves sur les notions de prix d’achat, de prix de revient, de prix de vente et de bénéfice.

2. EXEMPLES D’ACTIVITÉS POUR LES ÉLÈVES

► Activité 1. Niveau CM1

Trouve un énoncé possible de problème correspondant aux données suivantes :

- une tonne de riz à 7 500 francs le sac de 25 kg;
- un carton de sardines à 12 500 francs;
- des frais de taxi de 750 francs.

► Activité 2. Niveau CM2

Mzé Mvoulana loue un camion pour transporter une cargaison de fruits du port de Fomboni (Mwali) jusqu’à son magasin. Ce camion ne peut pas transporter une charge de plus de 7 000 kg ou 7 tonnes (7 t).

La cargaison est composée de 1,645 t de papayes, 2,650 t de bananes, 1,765 t de mangues et 3,456 t d’oranges.

Justifier à partir de calculs si le camion va pouvoir transporter toute la cargaison en un seul voyage.
► Activité 3. Niveau CM2
La mère d’Anzla en voyage à l’étranger veut acheter une tablette numérique à 225 000 francs et une calculette scientifique à 7 500 francs pour sa fille admise au BEPC. Il ne lui reste dans son portefeuille que 300 000 francs. Elle se demande si elle a assez d’argent pour acheter les 2 objets.
Par des calculs raisonnés, quelle réponse donnes-tu à la maman d’Anzla ? (Justifie ta réponse.)

► Activité 4. Niveau CP2
Dounia a 5 stylos et Salim a 3 stylos.
Ils ont en tout stylos.
Dounia a de stylos que Salim. Salim a de stylos que Dounia.
Maman donne 2 stylos à Salim. Alors maintenant, Salim a de stylos que Salim.

► Activité 5. Niveau CE
Dans la journée, Farouk a vendu, dans son épicerie, 15 boites de lait de 10 500 francs l’une, 12 sachets de sucre à 350 francs le sachet et 27 kg de farine à 400 francs le kilogramme. Il a payé 15 000 francs aux services des impôts.
– Trouver le prix total de chaque produit vendu.
– Trouver la somme qu’il a gagnée pendant la journée.

► Activité 6. Niveau CE1
Pour être en bonne santé, un adulte doit boire trois litres d’eau par jour. L’eau minérale Salsabil est vendue en bouteille de 1,5 litre.
– Combien de bouteilles d’eau doit-on boire par jour?
– Combien de bouteilles doit-on acheter pour une semaine ?

► Activité 7. Niveau CP1
Voici des crayons de couleurs composés de 5 crayons rouges, 3 crayons bleus et 4 crayons jaunes. Colorie-les en fonction des couleurs.
▶ Activité 8. Niveau CP

Au marché de Domoni Anjouan, les oranges se vendent par tas de 10 oranges. Tante Faridat a dans son panier 45 oranges.
- Combien de tas de dizaines d’oranges aura-t-elle installé pour la vente ?
- Entoure les oranges par tas.
- Combien d’oranges lui restera-t-il ?

▶ Activité 9. Niveau CE

La maman de Soidrou a 2 options pour faire ses courses : soit acheter chaque jour 2 sachets de 50 francs chacun ; soit acheter chaque mois 1 panier de 500 francs.
- Combien coutent les sachets utilisés durant un mois ?
- Acheter chaque jour les sachets est-il plus économique qu’acheter le panier pour le mois ?

▶ Activité 10. Niveau CM2

La famille de Bounou habite un appartement électrifié par le réseau Ma-Mwe et qui possède 6 ampoules (une dans la véranda et les autres dans les 5 chambres).

La facture mensuelle est de 8 500 francs si toutes les ampoules sont allumées de 18 heures jusqu’au matin. Si c’est seulement l’ampoule de la véranda qui reste allumée à partir de minuit, la facture revient à 4 750 Francs.
- Quelle somme peut économiser la famille durant un mois si les ampoules dans les chambres sont éteintes à partir de minuit ?
- Quelle perte enregistre la famille si toutes les ampoules restent allumées durant une année ?
1. CORRIGÉS DU DIAGNOSTIC

► Autotest 1

<table>
<thead>
<tr>
<th>Une situation-problème, c’est…</th>
<th>V</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. un problème facile à résoudre.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>2. un problème ardu.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>3. un problème adapté au vécu des élèves.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>4. un problème qui exige un raisonnement.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>5. un problème avec des pièges.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>6. l’ensemble des problèmes prévus dans le manuel.</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

Voici quelques précisions pour certaines réponses.

Réponse numéro 1 : Une situation-problème doit comporter un obstacle et être assez complexe comme l’indique la définition proposée dans le mémento. Une situation-problème n’est donc pas nécessairement facile à résoudre pour tous les élèves.

Réponses numéros 2 et 5 : Comme le rappelle le mémento, une situation-problème permet aux élèves de travailler et de questionner des connaissances qui constituent des obstacles repérés par l’enseignant. Une situation-problème ne vise donc pas à proposer aux élèves des pièges ou des contextes ardus qui n’ont aucun intérêt en eux-mêmes car ils vont complexifier sans raison les apprentissages.

► Autotest 2

<table>
<thead>
<tr>
<th>La situation-problème permet de/d’…</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. activer les capacités de résolution des élèves.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>2. donner des définitions après mémorisation.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>3. avoir du sens.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>4. résumer la leçon.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>5. faire naître un questionnement chez les élèves.</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>6. amener l’élève à élaborer une suite d’actions.</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
Autotest 3

<table>
<thead>
<tr>
<th>Situations</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pose et effectue les opérations suivantes :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 × 4 =</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>345 + 17 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 : 50 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUSTIFICATION :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Il n’y a pas de contexte, la consigne ne précise pas ce que représente les données et le résultat. Les nombres ne sont associés à aucune grandeur (prix, poids, capacité…).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Ali possède 1 000 francs et veut compléter sa fourniture scolaire.</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Il achète un cahier de 96 pages à 250 francs et avec le reste il achète des pochettes transparentes qui coutent chacune 50 francs. Combien de pochettes peut-il acheter ?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Calcule la surface d’un carré de 65 mètres de côté.</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>JUSTIFICATION :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Il n’y a pas de contexte. La consigne ne précise pas pour quelle raison on pose le problème ni l’utilité d’en connaître le résultat.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autotest 4

Voici un exemple de situation-problème qu’il est possible de rédiger :

800 pèlerins comoriens, répartis dans 3 avions, sont partis à la Mecque. Ils arrivent le 12 septembre à bord d’Ethiopian Airlines. Les vols de 15 heures et de 18 heures ont transporté le même nombre de pèlerins et, à 21 heures, le 3e vol a transporté 300 pèlerins.

Combien de passeports les services de l’immigration de l’aéroport international Prince Said Ibrahim vont-ils contrôler durant le premier vol ?

Il existe d’autres situations-problèmes qui conviennent également. Tu pourras les travailler avec ton tuteur.

Autotest 5

Voici un exemple de situation-problème possible :

La coopérative scolaire de l’école de Dibwani organise un concours d’orthographe. Elle a préparé un lot de cadeaux pour récompenser le premier de chacune de ses 6 classes.

Les lots sont composés à partir des fournitures scolaires suivantes : 6 dictionnaires, 60 cahiers de 192 pages et 120 stylos.

Calcule le nombre de dictionnaires, de cahiers et de stylos que recevra chaque premier de chaque classe.

Il existe d’autres situations-problèmes qui conviennent également. Tu pourras les travailler avec ton tuteur.
Autotest 6

<table>
<thead>
<tr>
<th>N°</th>
<th>Étapes</th>
<th>Questionnements</th>
<th>Réponses attendues</th>
</tr>
</thead>
</table>
| 1 | Découverte | 1. Pourquoi chaque cultivateur ne peut-il pas vendre seul sa récolte ? | 1a. Parce que le poids de la récolte de chacun est faible.
 | | 1b. Parce que la récolte de chacun est inférieure à 500 kg.
 | | 1c. Parce que pour gagner beaucoup, il faut plus de 500 kg de récolte de vanille. |
| 2 | Pré-résolution : relevé des données | 1. Quels sont les nombres qui représentent des poids ?
 | 2. Quel est le nombre qui représente un prix ? | 1. Ce sont : 500 kg, 215 kg, 285 kg et 310 kg.
 | | 2. C’est 3 240 000 francs. |
| 3 | Pré-résolution : interprétation des données | 1. Que représentent les nombres 285 kg, 310 kg et 215 kg ?
 | 2. Que représente le nombre 3 240 000 francs comoriens ?
 | 3. Que représente le poids 500 kg ? | 1. Ce sont les poids des récoltes de vanille des 3 cultivateurs.
 | | 2. C’est le prix de vente total de la vanille. C’est l’argent que les 3 cultivateurs ont gagné.
 | | 3. C’est le poids minimal de vanille que l’on peut vendre à bon prix. |
| 4 | Résolution | 1. Comment reconnaître le poids de la vanille vendue ?
 | 2. Comment trouver le prix du kilogramme de vanille ?
 | 3. Comment trouver la somme que chaque cultivateur a gagné ? | 1. En additionnant les poids des récoltes des 3 cultivateurs.
 | | 2. En divisant le prix total par le poids total.
 | | 3. En multipliant le prix du kilogramme par le poids de la récolte de chacun. |
| 5 | Objectivation | 1a. Quelle est la démarche pour résoudre ce problème ?
 | 1b. Quelles sont les quantités calculées et dans quel ordre ? | 1a. On regarde si les 3 cultivateurs peuvent bénéficier d’un bon prix.
 | | 1b. On cherche ensuite le prix d’un kilogramme de vanille verte dont ils peuvent bénéficier ensemble.
 | | 1c. On calcule ensuite le montant auquel chacun a droit. |
Autotest 7

<table>
<thead>
<tr>
<th>Questions</th>
<th>Opérations</th>
<th>Couple</th>
<th>Non</th>
<th>Pourquoi ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Addition</td>
<td>Longueur/Longueur</td>
<td></td>
<td>La grandeur que désigne la consigne, exprimée en mètres, est la longueur du tissu et non le prix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Prix</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Multiplication</td>
<td>Quantité/Quantité</td>
<td></td>
<td>Le prix cherché est fonction d’une part du prix du mètre de tissu et d’autre part de la quantité, en mètres, de tissus achetée.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Quantité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Division</td>
<td>Quantité/Quantité</td>
<td>✗</td>
<td>Le montant du prix du tissu intervient car il est à répartir entre les filles de la classe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Quantité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Multiplication</td>
<td>Prix/Prix</td>
<td>✗</td>
<td>Si l’on veut n’utiliser qu’une seule multiplication comme l’indique le tableau, il est nécessaire de partir du montant payé par chaque fille et de le multiplier par le nombre de filles. La seconde grandeur est donc une quantité.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Quantité</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prix/Prix</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. CORRIGÉS DES ACTIVITÉS

Activité 1

a. Les opérations qu’un élève de CE1 va utiliser sont :

- Pour la question 1 : la division sans report puisqu’il s’agit d’un partage en parts égales ;
- Pour la question 2 : la soustraction car il s’agit d’une diminution.
b. Un élève qui a répondu 24 à la première question et 6 à la seconde a proposé comme réponse les données numériques de l’énoncé. Son travail sur la représentation de la situation n’est pas abouti, il n’a pas intégré la notion de partage et la nécessité d’une division.

Les 2 principales remédiations que l’on peut mettre en place pour lui faire comprendre son erreur sont, par exemple :

– Reprendre la consigne en contextualisant la situation à l’aide d’objets de la classe tels que des stylos ;
– Faire appel aux explications des autres élèves.

c. Dans la phase de découverte, l’information sur laquelle il convient d’insister est le principe du partage équitable. Il est en effet nécessaire que les élèves comprennent que les petits-enfants reçoivent chacun des bananes et que chacun en reçoit exactement le même nombre.

Pour traiter cette information, les questions que l’on pourrait poser aux élèves peuvent viser différents objectifs, tels que :

– Orienter vers la procédure de partage équitable : Comment la grand-mère peut-elle faire pour procéder au partage équitable des bananes entre ses petits-enfants ?
– Évoquer la situation finale, après partage équitable : Qui possède des bananes après le partage équitable de la grand-mère ? / Après le partage équitable de la grand-mère, certains petits-enfants ont-ils plus de bananes que d’autres ?
– Redonner du sens aux données numériques de l’énoncé : Combien de bananes partage-t-elle ? / Pour combien de petits-enfants la grand-mère partage-t-elle les bananes ?

d. Les 3 étapes principales qu’un élève devrait suivre pour résoudre la situation sont :

– L’élève représente la situation de partage par 6 ronds représentant les 6 petits-enfants, dans lesquels il introduit successivement des croix, représentant les bananes, de 1 à 24. Pour obtenir la réponse au problème, il ne lui reste plus qu’à compter le nombre de croix dans chaque rond (technique 1 de distribution).

– L’élève doit comprendre ensuite que l’activité de partage relève de l’opération division.

Un travail de groupe n’est pas souhaitable au début de la phase de résolution. Il est important, dans un premier temps, que chaque élève réfléchisse individuellement, fasse ses essais et construise par lui-même une procédure qui lui est propre, sur l’ardoise par exemple. Le travail en groupe n’est pas profitable tant que les élèves n’ont pas des propositions personnelles suffisamment avancées à échanger, à argumenter et à défendre.

► Activité 2

Les questions que l’on peut poser aux élèves pour les aider à résoudre la situation vont porter, d’une part, sur la compréhension de la situation et, d’autre part, sur l’identification du sens des données numériques.

Ces questions peuvent être, par exemple, en fonction des phases :

– Phase de découverte : Que fait la mairie de Moroni ? Pourquoi accorde-t-elle des autorisations ? Combien d’autorisations accorde-t-elle habituellement par mois ?
– Phase de pré-résolution : Pourquoi le mois de juillet est-il particulier ? Combien d’autorisations sont accordées pour un mois normal ? Comparer les autorisations du mois normal avec celles du mois de juillet. Quelle est la particularité du mois de mai ?
– Phase de résolution : Comment trouver le nombre d’autorisations accordées au mois de juillet ? Combien d’autorisations sont accordées pour ce mois de mai ? Combien y a-t-il de mois dans l’année ? Comment trouver le nombre d’autorisations accordées pour les 10 autres mois ? Quelles sont alors les autorisations délivrées durant toute l’année ?
– Phase d’intégration : Donner d’autres situations dans lesquelles on utilise la multiplication.

► Activité 3

a. Voici un exemple d’énoncé de situation-problème que l’on peut rédiger à partir de ces informations :

Une classe a un effectif de 35 élèves. Ces derniers organisent un jeu auquel participent plusieurs équipes qui comptent chacune 8 élèves. 3 élèves se consacrent à l’arbitrage.

Combien d’équipes a-t-on formé ?

Il existe d’autres situations-problèmes qui conviennent également. Tu pourras les travailler avec ton tuteur.

b. Les 3 principales difficultés des élèves peuvent être :

– La compréhension de la situation : 3 élèves ne se consacrent qu’à l’arbitrage, les autres forment des équipes de 8 ;
– La compréhension du texte de l’énoncé : par exemple, les expressions « équipes qui comptent chacune 8 élèves » ou « ces derniers » peuvent poser des difficultés de compréhension à certains élèves ;

– L’ordonnancement des opérations de soustraction et de division : les élèves vont probablement identifier assez rapidement que cette situation nécessite de diviser et de soustraire. La difficulté peut provenir de l’ordonnancement de ces 2 opérations. Faut-il soustraire avant de diviser ou le contraire ?

Un moyen d’aider les élèves à surmonter ces difficultés est de les questionner. Ces questions peuvent par exemple les aider à :

– Comprendre la situation : Les élèves vont-ils tous avoir le même rôle ?
– Apprécier le sens des données numériques de l’énoncé : Combien d’élèves forment une équipe ? Combien d’élèves se consacrent-ils à l’arbitrage ?
– Déduire des informations numériques des données de l’énoncé : Combien d’élèves vont jouer dans les équipes ?

c. Les procédures possibles des élèves, justes ou erronées, peuvent être par exemple :

– Effectuer la division avec reste de 35 par 8 et interpréter le sens du quotient (nombre d’équipes) et du reste (qui correspond au nombre d’élèves arbitres). Remarque : pour que cette procédure conduise au bon résultat, il est nécessaire que les élèves interprètent correctement le reste et le quotient.
– Effectuer la soustraction de 35 et de 3, avant de passer à la division par 8. Remarque : pour obtenir un résultat juste, il faut également que les élèves interprètent correctement le quotient de la division (nombre d’équipes).
– Effectuer la soustraction de 35 et de 8, puis une division par 3. Remarque : cette procédure est erronée, le sens des nombres 8 et 3 n’a pas été compris.

Pour aider les élèves à comprendre la situation, on peut mettre en place les remédiations suivantes :

– La schématisation de la situation au tableau noir : les élèves peuvent être représentés par des croix que l’on va répartir dans le groupe d’arbitres et dans les équipes ;
– La simulation de la situation en classe : un groupe d’élèves va représenter la classe. Ce groupe constituera les équipes et prévoira les arbitres. Il n’est pas nécessaire de travailler avec 35 élèves (l’effectif de la classe de l’énoncé), qui est un nombre élevé pour simuler la situation et guider le déplacement des élèves. Un effectif plus réduit suffit à appréhender la situation.

Dans les 2 cas précédents, les manipulations et déplacements à réaliser vont aider les élèves à s’approprier la situation, à construire du sens et à associer peu à peu les opérations à effectuer aux gestes qu’ils font.
d. Les 2 modalités de travail, individuelle ou en groupe, sont envisageables. Les principaux arguments sont par exemple :

- Pour le travail individuel :

 Il est important que les élèves construisent par eux-mêmes des premiers essais de résolution. Cela leur permettra de commencer à interpréter la situation, à identifier le sens des données numériques et les premières opérations à effectuer. Ils pourront aussi cerner les points qu’ils ne comprennent pas, dégager des certitudes et des interrogations.

- Pour le travail en groupe :

 Le travail en groupe et les échanges entre pairs sont essentiels, à condition que des phases de recherche individuelle aient précédé la mise en groupes. En effet, pour que les débats en groupe soient profitables, il est nécessaire que chaque élève ait une première représentation du problème, ainsi que quelques résultats, même partiels, à échanger.

 L’intérêt du travail en groupe est d’obliger les élèves à formuler leur démarche, à les défendre et à les justifier. Le travail en groupe leur impose également de comprendre le point de vue de leurs pairs, d’intégrer des démarches auxquelles ils n’avaient pas pensé et de statuer sur leur validité en mobilisant leur propre représentation de la situation, qui est ainsi susceptible de s’enrichir et d’évoluer.

Pour faire en sorte que les élèves travaillent et produisent, l’attitude de l’enseignant peut être par exemple de / d’ :

- Rappeler la consigne ;
- Observer leur travail, écouter les échanges dans les groupes avant toute intervention ;
- Faire formuler par les élèves leurs propres démarches et leur demander de les commenter et de les justifier ;
- Poser des questions aux élèves sans en donner les réponses.

Si l’on souhaite que les élèves produisent, il ne faut pas leur expliquer des démarches valides ou les résultats, mais rester sur leurs propositions et relancer leur réflexion. Le fait de leur demander de formuler leurs démarches, de les justifier et de proposer de nouvelles pistes à l’aide de questions sans réponses leur permettra d’avancer.

Activité 4

a. L’objectif 2 (expression des durées en fraction d’heure et en fraction de tour de la grande aiguille) est intéressant pour les élèves. Citons un argument dans chaque cas :

- Pour les durées exprimées en fractions d’heure :

 Les habitudes de la vie quotidienne font souvent appel à des fractions d’heure. On parle souvent en effet de demi-heure, de quart d’heure...
– Pour les durées exprimées en fraction de tour de la grande aiguille :

Pour comprendre le fonctionnement du réveil, il faut connaître le sens de rotation de la grande aiguille et être capable de faire le lien entre un déplacement de la grande aiguille et la durée en minutes qu’il représente. Le travail sur les fractions de tour de la grande aiguille permet d’établir ce lien entre déplacement de l’aiguille et durée en minutes.

b. Pour que l’élève puisse s’approprier la situation-problème et s’y projeter, il est déterminant de faire appel à des contextes qui lui sont familiers. On peut par exemple inscrire la situation-problème dans sa vie familiale ou dans sa vie scolaire en invoquant des événements qu’il connaît bien.

L’exercice 1, replacé dans le contexte scolaire peut par exemple donner :

À l’école, il est 10h. Dessine le réveil qui indique l’heure.
La récréation est dans une demi-heure. Quelle sera l’heure affichée sur le réveil au moment de la récréation ? Dessine le réveil tel qu’il sera à ce moment-là.

L’exercice 2, replacé dans le contexte familial, peut être formulé de la manière suivante :

Le réveil de la maison affiche 11h30. Dessine le réveil qui indique l’heure.
Les parents annoncent que la famille va partir déjeuner chez les grands-parents quand la grande aiguille aura fait un quart de tour. Quelle heure sera-t-il au moment du départ ? Dessine le réveil tel qu’il sera au moment du départ.

c. Les prérequis que doivent connaître les élèves sur le fonctionnement du réveil sont :

– la présence de 2 aiguilles, une pour les heures, l’autre pour les minutes ;
– le sens de rotation des aiguilles ;
– la graduation du cadran en heures ;
– la graduation du cadran en minutes (et par exemple, le fait qu’un écart entre 2 nombres correspond à une durée de 5 minutes).

d. Les matériels individuels qui permettent aux élèves de marquer les heures du réveil et de travailler les objectifs visés sont les suivants :

– **un réveil papier** individuel

Il s’agit d’un cadran en carton avec aiguilles en carton qui sont fixées par une attache parisiennne de façon à pouvoir tourner.
Ce matériel peut être fabriqué par les élèves chez eux ou bien en classe à partir de cartons et d’aiguilles à découper données par l’enseignant.

– **une planche de cadrans gradués mais sans aiguilles**

Il s’agit d’une feuille qui contient une suite de cadrans (une suite de ronds) gradués avec les heures mais sans les aiguilles. Les élèves dessineront ces aiguilles au crayon au fil des activités.
- la photocopie d’un « grand » cadran d’horloge gradué et sans aiguille glissée dans une pochette plastique transparente et un feutre effaçable

L’élève dessine, avec le feutre effaçable, les aiguilles de l’horloge sur la pochette plastique transparente. Pour résoudre l’exercice suivant, il efface les aiguilles et les redessine dans de nouvelles positions.

- une ardoise sur laquelle l’élève dessine le cadran et les aiguilles.
- un brouillon permettant à l’élève de dessiner le cadran et les aiguilles.

Ces matériels individuels possèdent deux avantages principaux :

- Ils rendent les élèves actifs et leur permettent de manipuler, de réagir vite, d’écrire des heures rapidement et de multiplier les essais.
- Ils permettent également à l’enseignant de disposer d’une vue synthétique des résultats des élèves. Pour cela, il suffit que l’enseignant donne à ses élèves une heure à trouver. Puis, il leur demande, au signal, de lever leur matériel individuel même s’ils n’ont pas fini. L’enseignant dispose alors, d’un simple coup d’œil et en se déplaçant dans la classe, d’un aperçu instantané et global de la réussite des élèves. Il peut avoir immédiatement une idée de la réussite des élèves, des types d’erreurs qu’ils ont commis et de leurs difficultés individuelles.

L’ardoise et le brouillon ont pour principal inconvénient de laisser à la charge des élèves les dessins du cadran de l’horloge et de ses graduations. Certains élèves vont prendre trop de temps à dessiner ou mal réaliser le cadran, avec des graduations fausses ou imprécises, ce qui pénaliserà leur réflexion sur la position des aiguilles. Les autres matériels, en revanche, fournissent le cadran et la graduation et permettront aux élèves de se consacrer à la localisation des aiguilles.

f. Voici les étapes possibles qui permettent de traiter des activités du type des exercices 1 et 2 :

Étape 1 : exercices rapides destinés à réviser les prérequis et à débattre avec les élèves.

- Contenus abordés :
 - affichage d’une heure donnée (exemple : 11 h 30);
 - ajout d’une durée (exemple : un quart d’heure ou un demi-tour d’aiguille);
 - lecture et affichage de l’heure finale.
Cycle de travail :
- les élèves ont leur matériel individuel (exemple : « réveil papier »);
- l’enseignant annonce la consigne (exemple : affiche 10 h 30 ; ajoute une demi-heure);
- les élèves cherchent individuellement ;
- le maître donne le signal aux élèves de lever leur matériel individuel, même s’ils n’ont pas trouvé ou n’ont rien fait ;
- le maître examine d’un coup d’œil les réponses (ce qui lui permet de voir si les élèves ont compris et quels types d’erreurs ont été faits) ;
- le maître montre la bonne réponse sur son support « collectif » ;
- on recommence.

Étape 2 : exercices individuels avec correction collective par un élève et dialogue avec la classe.

Étape 3 : résolution, en binômes, d’exercices plus compliqués, avec une situation plus riche et des questions qui s’enchaînent, suivis d’une correction collective.

► Activité 5

a. Dans cette question, on s’intéresse au fait de ranger les élèves en fonction de leurs résultats à l’examen d’entrée en 6e. Pour orienter les élèves, on peut leur suggérer de calculer les totaux des notes par candidat et leur rappeler la façon de calculer une moyenne simple.

Les erreurs auxquelles l’enseignant peut s’attendre sont des erreurs de calcul et le fait de ne prendre en compte que les notes d’une seule discipline pour ranger les élèves par mérite.

b. Dans cette question, on s’intéresse à la détermination des 3 meilleurs élèves en composition française. Pour aider la classe à passer du fait de ranger selon les résultats à l’examen au fait de ranger selon les résultats d’une seule discipline, on peut :
- prendre en compte les différents rangements réalisés par les élèves et exploiter leurs erreurs ;
- choisir l’exemple d’une autre discipline avant de les laisser ranger selon les résultats en composition française.

c. Le principal enseignement que peut retenir un élève de cet exercice est qu’un même tableau de notes peut aboutir à des rangements d’élèves différents.
Activité 6

a. Les compétences en jeu dans cette situation sont relatives aux calculs additifs d’horaires et de durées.

b. Les informations utiles concernent l’horaire de départ et celui d’arrivée, la durée de l’escale et le fait de faire un aller-retour.

c. Pour ajouter à 10 h 55 une durée de 35 min, deux procédures sont possibles :
 1. Ajouter séparément les heures et les minutes puis rendre le nombre de minutes strictement inférieur à 60 en transformant les minutes excédentaires en heures.
 Ainsi, les étapes de calcul de l’exemple sont : 10 h 55 min + 35 min = 10 h 90 min = 11 h 30 min.
 2. Ajouter en plusieurs fois la durée, de façon à passer par des heures justes.
 Ainsi, les étapes de calcul de l’exemple sont :
 - À 10 h 55, on ajoute 5 min pour parvenir à l’horaire juste 11 h. Il reste donc 30 min à ajouter ;
 - À 11 h, on ajoute les 30 min restantes, le résultat est donc 11 h 30.
 La procédure précédente peut être visualisée à l’aide du réveil qui affichera les horaires intermédiaires.

d. Pour soustraire à 10 h 15 une durée de 45 min, deux procédures sont possibles :
 1. Si le nombre de minutes de l’horaire est inférieur au nombre de minutes de la durée, on peut convertir en minutes 1 heure de l’horaire et procéder à la soustraction.
 Ainsi, les étapes de calcul de l’exemple sont : 10 h 15 min – 45 min = 9 h 75 min – 45 min = 9 h 30 min.
 2. Si le nombre de minutes de l’horaire est inférieur au nombre de minutes de la durée, on peut soustraire en plusieurs fois la durée, de façon à passer par des heures justes.
 Ainsi, les étapes de calcul de l’exemple sont :
 - À 10 h 15, on soustrait 15 min pour parvenir à l’horaire juste 10 h. Il reste donc 30 min à retirer ;
 - À 10 h, on soustrait les 30 min restantes, le résultat est donc 9 h 30.
 La procédure précédente peut être visualisée à l’aide du réveil qui affichera les horaires intermédiaires.
Activité 7

Pour concevoir une situation-problème :
- Tu te situes par rapport au programme (curriculum) ;
- Tu identifies l’objectif de la leçon ;
- Tu identifies les compétences à développer chez l’apprenant au cours de la séquence ;
- Tu passes à la rédaction de l’énoncé de la situation-problème.

Situation dans le programme : curriculum CM1 semaine 15 palier 3

Objectifs :
- Calculer le prix unitaire à partir du prix total ;
- Calculer le prix total à partir du prix unitaire ;
- Calculer le bénéfice à partir du prix d’achat et du prix de vente.

Compétences à développer chez l’apprenant :
- Identifier des informations essentielles ;
- Relever les données numériques utiles ;
- Choisir les opérations à effectuer.

À partir des indications ci-dessus nous te proposons la rédaction suivante de la situation :

Mhaza achète dans un magasin un carton de 50 boîtes de sardines à 15 000 francs. Elle vend dans son épicerie la boîte à 350 francs. À quel prix achète-t-elle une boîte de sardines ? Combien gagne-t-elle pour un carton de sardines vendu ?

Les éléments de mises en œuvre portent sur l’organisation du travail qui va alternner des temps d’interactions collectives entre l’enseignant et la classe (explication des consignes, des principales erreurs, de la correction), des temps de recherche individuelle et des temps de recherche en groupes pour confronter les solutions, argumenter les choix et intégrer la démarche des camarades.
L’objectif de cette séquence est de t’aider à mieux concevoir des situations-problèmes et à mieux accompagner tes élèves dans leur résolution. Il s’agit de définir des situations-problèmes contextualisées, adaptées à l’environnement des élèves et à leur vécu, d’organiser les différentes étapes de la mise en œuvre et de développer chez eux un esprit de recherche face à une situation-problème.

Après avoir parcouru toute la séquence et traité les différentes activités proposées, fais ton bilan en répondant avec clarté et objectivité aux questions proposées.

► 1. Quels sont les éléments de cette séquence qui t’ont aidé dans la conception et la mise en œuvre des situations-problèmes dans ta classe ? Comment cette aide s’est-elle traduite ?

► 2. Quelles sont les difficultés que tu as rencontrées dans la mise en œuvre des activités de la séquence ?

► 3. Comment es-tu parvenu à surmonter les difficultés rencontrées durant les apprentissages ?
► 4. Tes capacités à concevoir et mettre en place une situation-problème sont-elles renforcées? Sur quel plan as-tu progressé?

..
..
..
..
..
..
..

► 5. Cite quelques problèmes que tu aurais souhaité voir abordés dans cette séquence et qui ne le sont pas.

..
..
..
..
..
..
..
..
..
..
..
..

► 6. Quels conseils apportes-tu à tes collègues pour une utilisation effective de cette séquence du livret de mathématiques durant les apprentissages?

..
..
..
..
..
..
..
..
..
...
Séquence 2

CONNAITRE ET EXPLOITER LES OBJETS GÉOMÉTRIQUES, LEURS PROPRIÉTÉS ET LES INSTRUMENTS
La géométrie plane occupe une place importante dans l’enseignement en Union des Comores. Les compétences attendues le prouvent à tous les niveaux de classe. Elles précisent par exemple que l’élève doit, dès la fin du CP2, « pouvoir résoudre une situation-problème mettant en œuvre la manipulation, le classement et la distinction des objets suivant leur forme », ainsi que les « formes géométriques simples (triangle, carré, rectangle et cercle) ». Cette compétence est réaffirmée pour la fin du CE2 et la fin du CM2 où les élèves doivent « résoudre une situation-problème significative qui met en œuvre les formes géométriques planes et leur construction (triangle, rectangle, carré, trapèze, parallélogramme, losange) ».

Ces compétences ne sont actuellement pas maîtrisées par nos élèves. Il est en effet possible d’établir que les élèves comoriens ont des difficultés à construire correctement des figures et à utiliser le matériel de géométrie. Ce constat découle des analyses des résultats des élèves aux examens nationaux et aux évaluations internationales. Les observations, en classe, de l’enseignement et de l’apprentissage de la géométrie expliquent pour partie cet état de fait. Les enseignants n’accompagnent pas suffisamment leurs élèves lors des manipulations des instruments. Parfois même, ils négligent ces outils et ne les sollicitent pas durant les apprentissages. On constate que l’équipement des établissements en kits de matériel géométrique destinés aux enseignants n’entraîne pas leur utilisation effective par les maitres.

De leur côté, les élèves n’ont ni l’énergie ni le savoir-faire pour utiliser convenablement les instruments de géométrie et résoudre les situations qui leur sont proposées. Cette situation est aggravée par des problèmes matériels. En effet, la distribution par l’État de fournitures dans les écoles ne prend pas en compte le matériel de géométrie dont beaucoup d’élèves sont, en conséquence, démunis.

Cette situation est fortement préjudiciable aux apprentissages fondamentaux qui visent à aider les apprenants à se repérer dans l’espace et à travailler sur des objets géométriques pour les situer, les représenter, les analyser et en repérer les propriétés. Le matériel de géométrie a une place essentielle pour atteindre ces objectifs. Son usage est incontournable pour aider les élèves à analyser des situations dans l’espace et développer des compétences permettant d’agir sur leur environnement. L’enjeu est important et ne concerne pas seulement les apprentissages scolaires. En effet, les compétences acquises dans le domaine de la géométrie sont nécessaires à l’exercice de nombreux métiers, même courants, tels que la maçonnnerie, la menuiserie, le dessin industriel, la couture, la ferronnerie, la calligraphie, la teinture…
1. **Objectif général**

Cette séquence a pour objectif d’améliorer les compétences professionnelles des enseignants dans l’enseignement de la géométrie.

2. **Objectifs spécifiques**

Il s’agit d’amener les enseignants à :

- faire utiliser correctement le vocabulaire de géométrie par les élèves ;
- faire identifier les différents instruments de géométrie et leurs utilités ;
- faire manipuler les instruments de géométrie ;
- faire utiliser les instruments appropriés, en lien avec les propriétés géométriques, pour construire des figures et pour mesurer.
Les autotests qui suivent vont te permettre de t’autoévaluer et de situer ton niveau de maitrise des objets géométriques, de leurs propriétés et des instruments. Les commentaires en fin de diagnostic te donnent quelques indications pour t’aider à te situer et à remédier à tes manques éventuels.

1. INSTRUMENTS

▶ Autotest 1

Quel(s) instrument(s) de géométrie utilis-es-tu exclusivement au CM2 ?

☐ a. Le rapporteur
☐ b. Le compas
☐ c. L’équerre
☐ d. Aucun

▶ Autotest 2

Dans le tableau suivant, indique par une croix les instruments qui permettent de construire les figures données.

N. B. : On n’indiquera que les instruments les plus simples qui sont absolument nécessaires aux différentes constructions.

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Des lignes courbes</th>
<th>Des droites parallèles</th>
<th>Des angles droits</th>
<th>Des cercles</th>
<th>Des cercles avec des rayons donnés</th>
<th>Des rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Équerre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapporteur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Règle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Règle graduée</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

▶ Autotest 3

Une trousse scolaire contient les instruments de géométrie suivants : une règle, une règle graduée, une équerre, un rapporteur, et un compas.

Mentionne dans le tableau suivant le(s) instrument(s) nécessaire(s) que tu demandes aux élèves d’utiliser pour réaliser les taches indiquées.
2. **VOCABULAIRE**

► **Autotest 4**

Écris le nom des lignes qui sont tracées.

<table>
<thead>
<tr>
<th>Lignes</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

► **Autotest 5**

Le tableau suivant propose différentes figures (respectivement un rectangle, un triangle et un carré) et des lignes qui les partagent en 2 sous-figures.

Écris à chaque fois le nom de ces lignes.

<table>
<thead>
<tr>
<th>Figures</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noms des lignes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
► **Autotest 6**

Dans le tableau ci-dessous, précise quels sont les angles droit, aigu et obtus.

<table>
<thead>
<tr>
<th>Angles</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **INSTRUMENTS ET PROPRIÉTÉS**

► **Autotest 7**

On te donne une feuille de papier A4. On te demande de réaliser par pliage les figures indiquées.

Trace les pliages qui permettent de dessiner ces figures.

Pour vérifier que tu as bien obtenu les figures indiquées, indique les instruments et les propriétés que tu peux utiliser.

<table>
<thead>
<tr>
<th>Figures</th>
<th>Un triangle isocèle</th>
<th>Un carré</th>
<th>Un losange</th>
<th>Un triangle rectangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracé des pliages que tu fais</td>
<td></td>
</tr>
<tr>
<td>Instrument(s) utilisé(s) pour vérifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propriété(s) utilisée(s) pour vérifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Autotest 8

On te donne la planche de figures ci-dessous :

1. Classe les figures ayant le même nombre de côtés.
2. Précise la nature de chaque figure ainsi que les propriétés et les instruments qui te permettent de l’affirmer.
3. Reproduis les figures ayant au moins 2 angles droits en précisant les instruments utilisés à chaque étape.
4. Cite les figures ayant un angle obtus.

Autotest 9

La première ligne du tableau ci-dessous propose une devinette destinée aux élèves pour qu’ils construisent un triangle rectangle.

Utilise le modèle pour faire deviner et construire les figures indiquées dans le tableau.

Précise à chaque fois les instruments que tu utilisés pour la construction.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Devinette</th>
<th>Construis-moi</th>
<th>Instruments que tu utilises pour la construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un triangle rectangle</td>
<td>J’ai 3 côtés et 1 angle droit.</td>
<td>C</td>
<td>A, B</td>
</tr>
<tr>
<td>Figure</td>
<td>Devinette</td>
<td>Construis-moi</td>
<td>Instruments que tu utilises pour la construction</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Un carré</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un rectangle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un triangle équilatéral</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autotest 10

Observe la figure ci-dessous et remplis le tableau de figures qui suit, en identifiant et nommant les figures indiquées.

Repère le triangle équilatéral et reproduis-le en précisant les instruments utilisés et les actions réalisées.

![Diagramme de figures géométriques](image-url)
Tableau de figures

<table>
<thead>
<tr>
<th>Figures à déterminer</th>
<th>Réponses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 triangles rectangles</td>
<td></td>
</tr>
<tr>
<td>1 triangle équilatéral</td>
<td></td>
</tr>
<tr>
<td>1 carré</td>
<td></td>
</tr>
<tr>
<td>4 rectangles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figures à déterminer</th>
<th>Réponses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 quadrilatère qui a exactement un angle droit</td>
<td></td>
</tr>
<tr>
<td>1 quadrilatère qui a exactement 2 angles droits</td>
<td></td>
</tr>
<tr>
<td>1 trapèze qui n’est pas un rectangle</td>
<td></td>
</tr>
</tbody>
</table>

Reproduction du triangle équilatéral avec indication des instruments utilisés et des actions réalisées.

<table>
<thead>
<tr>
<th>Reproduction du triangle équilatéral</th>
<th>Instruments utilisés et actions réalisées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autotest 11

Construis les angles ayant les mesures suivantes en utilisant seulement le compas et la règle.

a. Un angle de 90°
b. Un angle de 45°

Vérifie ta construction à l’aide du rapporteur.
4. **COMMENTAIRES**

Les corrigés des autotests te sont proposés en dernière partie de la séquence. Évalue tes réponses et suis les recommandations ci-dessous.

- Si tu as répondu correctement à un tiers des questions, tu dois fournir beaucoup d’efforts pour t’approprier le contenu de la séquence.
- Si tu as répondu correctement à deux tiers des questions, tu as un niveau acceptable de maitrise des contenus de la séquence, que tu dois renforcer par une appropriation des contenus non maîtrisés.
- Si tu as répondu correctement à plus de deux tiers des questions, tu as un bon niveau et tu peux réinvestir tes connaissances à travers la pratique.

Dans tous les cas, lorsque tu n’as pas réussi un autotest, il te faut identifier les contenus que tu ne maîtrises pas et les retravailler en te reportant au mémento et à la démarche méthodologique.
Lorsqu’ils abordent la géométrie, les jeunes enfants commencent par se familiariser avec les objets du plan de l’espace. Au fil de leur scolarité, ils découvrent de nouveaux objets, de nouvelles propriétés et changent peu à peu d’approches comme l’indique le tableau suivant :

<table>
<thead>
<tr>
<th>Approche</th>
<th>Fondement de cette approche</th>
<th>Un exemple de justification : Ce quadrilatère est un carré car…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceptive</td>
<td>La perception, qui permet d’identifier les objets et leurs propriétés visuellement</td>
<td>Ça se voit.</td>
</tr>
<tr>
<td>Instrumentée</td>
<td>Le recours aux instruments (règle, règle graduée, compas, équerre, rapporteur…) et la connaissance de propriétés</td>
<td>Je vérifie avec mon équerre que j’ai 4 angles droits et je vérifie avec le compas que les 4 côtés sont égaux. Je sais que ces propriétés sont suffisantes pour avoir un carré.</td>
</tr>
<tr>
<td>Déductive</td>
<td>Le recours aux définitions, aux théorèmes et au raisonnement déductif</td>
<td>D’après l’énoncé et tel théorème, je peux en déduire que tel angle est droit. Je peux procéder de la même façon avec les 3 autres angles. Comme l’énoncé précise que 2 côtés consécutifs sont égaux, je peux en déduire d’après telle propriété suffisante que l’on a un carré.</td>
</tr>
</tbody>
</table>

Dans les approches perceptive et instrumentée, l’élève donne peu à peu du sens aux premiers concepts de la géométrie tels que l’alignement de points, le parallélisme, la perpendicularité et les longueurs.

Le maniement des instruments et leurs liens avec les propriétés consolident ces premières expériences.

Avec des tâches de description, de construction et de reproduction de figures, l’élève se détache peu à peu de l’espace sensible et donne aux objets qu’il étudie un véritable statut d’objets géométriques.

L’approche déductive ne sera pas étudiée dans ce livret.

Le mémento te propose de faire un tour d’horizon des principaux objets de la géométrie. Il te précisera, selon les cas, comment ils se définissent, les particularités et caractéristiques qu’ils ont, les représentations que l’on peut en donner et les propriétés qu’ils possèdent.
2. OBJETS MATHEMATIQUES ET PROPRIETES

2.1. Point

Un point est un objet elementaire de la geometrie.

<table>
<thead>
<tr>
<th>Repräsentation 1</th>
<th>Repräsentation 2</th>
<th>Remarque</th>
<th>Pour bien comprendre l'objet a travers sa représentation</th>
</tr>
</thead>
</table>
| Le point A \(\text{A} \) | Le point B \(\text{B} \) | Dans ce livret, on choisit de prendre la représentation 1. | Il faut imaginer que la trace qui représente le point n'a « ni épaisseur ni dimension ».

2.2. Ligne

<table>
<thead>
<tr>
<th>Représentation</th>
<th>Commentaire</th>
<th>Pour bien comprendre l'objet a travers sa représentation</th>
</tr>
</thead>
</table>
| Une ligne est un ensemble particulier de points. | Il faut imaginer que la trace qui représente la ligne n'a « ni épaisseur ni largeur ». On peut aussi imaginer que cette trace provient d'un « point qui se déplace ».

- Lignes particulières

Une ligne peut etre de differentes natures.

<table>
<thead>
<tr>
<th>Nature de la ligne</th>
<th>Représentation</th>
<th>Nature de la ligne</th>
<th>Représentation</th>
<th>Nature de la ligne</th>
<th>Représentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courbe</td>
<td></td>
<td>Fermée</td>
<td></td>
<td>Brisée</td>
<td></td>
</tr>
<tr>
<td>Droite</td>
<td></td>
<td>Ouverte</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3. Droite, demi-droite, segment

Une droite, une demi-droite et un segment sont des lignes particulières.
Représentations et notations

<table>
<thead>
<tr>
<th>Objet</th>
<th>Représentation et notation</th>
<th>Caractéristiques</th>
<th>Pour bien comprendre l'objet à travers sa représentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droite</td>
<td>La droite (AB)</td>
<td>A et B sont 2 points de la droite. On dit aussi que la droite passe par les points A et B.</td>
<td>Il faut imaginer que le trait qui représente la droite se « prolonge indéfiniment des 2 côtés ».</td>
</tr>
<tr>
<td>Demi-droite</td>
<td>La demi-droite [AB]</td>
<td>A est l’origine de la demi-droite.</td>
<td>Il faut imaginer que le trait qui représente la droite se « prolonge indéfiniment d’un côté ».</td>
</tr>
</tbody>
</table>

- **Mesure de la longueur d’un segment**

On exprime la mesure d’un segment à l’aide d’une unité métrique comme le centimètre par exemple. Si la longueur du segment [AB] mesure 5 cm, on peut écrire : \(AB = 5 \text{ cm} \).

- **Médiatrice d’un segment**

<table>
<thead>
<tr>
<th>Définition</th>
<th>Représentation et notation</th>
</tr>
</thead>
</table>
| La médiatrice d’un segment est la droite perpendiculaire à ce segment et qui passe par son milieu.
De façon équivalente, la médiatrice d’un segment est l’ensemble des points situés à la même distance des extrémités de ce segment. | La droite (d) est la médiatrice du segment [AB]. |
2.4. Angle

Un angle est représenté par 2 demi-droites de même origine.

<table>
<thead>
<tr>
<th>Représentation et notation</th>
<th>Caractéristiques</th>
<th>Pour bien comprendre l’objet à travers sa représentation</th>
</tr>
</thead>
</table>
| L’angle xÂy | A est le sommet de l’angle xÂy. Les demi-droites [Ax) et [Ay) sont les côtés de l’angle xÂy. | Il faut imaginer que l’angle correspond à la portion de plan comprise entre les 2 demi-droites de même origine. Une autre façon d’imaginer l’angle à partir de sa représentation est d’imaginer qu’il correspond à « l’écartement entre les 2 demi-droites ».

Comparaison d’angles

On peut comparer des angles et dire que tel angle est plus petit que tel autre.

<table>
<thead>
<tr>
<th>Exemple</th>
<th>Pour bien comprendre la comparaison à travers les représentations des 2 angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’angle xÂy est plus petit que l’angle zBt.</td>
<td>Il faut imaginer que pour comparer 2 angles, on cherche à « encastrer » leurs représentations l’une dans l’autre de façon à superposer leur sommet et l’un de leurs côtés. L’angle le plus grand est celui dont la représentation « déborde » la représentation de l’autre angle et qui possède, en quelque sorte, « l’ouverture » la plus grande. La longueur des traits qui représentent les côtés des angles n’est pas déterminante. L’angle le plus grand n’est pas nécessairement celui dont les traits qui représentent les côtés sont les plus longs, mais celui qui a « l’écartement » le plus large.</td>
</tr>
</tbody>
</table>

Mesure d’un angle

Un angle se mesure en degrés.
Angles particuliers

<table>
<thead>
<tr>
<th>Nature de l’angle</th>
<th>Représentation</th>
<th>Commentaire</th>
<th>Remarque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nul</td>
<td></td>
<td>Il mesure 0°. Les 2 demi-droites qui le représentent sont confondues.</td>
<td></td>
</tr>
<tr>
<td>Aigu</td>
<td></td>
<td>Il mesure entre 0° et 90°. Il est compris entre l’angle nul et l’angle droit.</td>
<td></td>
</tr>
<tr>
<td>Droit</td>
<td></td>
<td>Il mesure 90°. Les 2 demi-droites qui le représentent sont perpendiculaires.</td>
<td>La transformation qui fait passer de la 1ʳᵉ demi-droite qui représente l’angle à la 2ᵉ correspond à une rotation d’un « quart de tour ».</td>
</tr>
<tr>
<td>Obtus</td>
<td></td>
<td>Il mesure entre 90° et 180°. Il est compris entre l’angle droit et l’angle plat.</td>
<td></td>
</tr>
<tr>
<td>Plat</td>
<td></td>
<td>Il mesure 90°. Les 2 demi-droites qui le représentent sont opposées.</td>
<td>La transformation qui fait passer de la 1ʳᵉ demi-droite qui représente l’angle à la 2ᵉ correspond à une rotation d’un « demi-tour ».</td>
</tr>
<tr>
<td>Plein</td>
<td></td>
<td>Il mesure 360°. Les 2 demi-droites qui le représentent sont confondues.</td>
<td>La transformation qui fait passer de la 1ʳᵉ demi-droite qui représente l’angle à la 2ᵉ correspond à une rotation d’un « tour complet ».</td>
</tr>
</tbody>
</table>
Bissectrice d’un angle

<table>
<thead>
<tr>
<th>Définition</th>
<th>Représentation et notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>La bissectrice d’un angle est la demi-droite dont l’origine est le sommet de l’angle et qui le partage en deux angles de même mesure.</td>
<td>La demi-droite $[Az]$ est la bissectrice de l’angle $y\hat{A}x$.</td>
</tr>
</tbody>
</table>

Exemples de polygones

Dans la planche de figures ci-dessous, on reconnait des triangles (polygones à 3 côtés), des quadrilatères (polygones à 4 côtés), un carré, un rectangle non carré et un quadrilatère croisé (dont 2 côtés sont sécants).
Diagonale d’un polygone

<table>
<thead>
<tr>
<th>Définition</th>
<th>Représentations</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>La diagonale d’un polygone est un segment qui relie 2 sommets non consécutifs de ce polygone.</td>
<td></td>
<td>Dans le polygone ABCDE, il y a 2 diagonales issues de B : les segments [BE] et [BD].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le quadrilatère ABCD n’a que 2 diagonales : les segments [AC] et [BD].</td>
</tr>
</tbody>
</table>

2.7. Triangles

<table>
<thead>
<tr>
<th>Définition</th>
<th>Représentation</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un triangle est un polygone qui a 3 côtés.</td>
<td></td>
<td>Un triangle possède 3 angles.</td>
</tr>
</tbody>
</table>
Triangles particuliers

<table>
<thead>
<tr>
<th>Nature du triangle</th>
<th>Définition</th>
<th>Représentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isocèle</td>
<td>Un triangle isocèle est un triangle qui a 2 côtés égaux. De façon équivalente, c’est également un triangle qui a 2 angles égaux.</td>
<td></td>
</tr>
<tr>
<td>Équilatéral</td>
<td>Un triangle équilatéral est un triangle dont les 3 côtés sont égaux. De façon équivalente, c’est également un triangle dont les 3 angles sont égaux et mesurent 60°.</td>
<td></td>
</tr>
<tr>
<td>Rectangle</td>
<td>Un triangle rectangle est un triangle dont 2 côtés sont perpendiculaires. De façon équivalente, c’est également un triangle qui possède un angle droit.</td>
<td></td>
</tr>
</tbody>
</table>

Droites particulières

<table>
<thead>
<tr>
<th>Objet</th>
<th>Définition</th>
<th>Représentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Médiane d’un triangle</td>
<td>Une médiane d’un triangle est une droite qui passe par un sommet et par le milieu du côté opposé.</td>
<td></td>
</tr>
<tr>
<td>Hauteur d’un triangle (1)</td>
<td>Une hauteur d’un triangle est une droite perpendiculaire à un côté et qui passe par le sommet opposé à ce côté.</td>
<td></td>
</tr>
<tr>
<td>Hauteur d’un triangle (2)</td>
<td>La hauteur d’un triangle ne passe pas toujours à l’intérieur de ce triangle.</td>
<td></td>
</tr>
</tbody>
</table>
Médiatrice d’un triangle
Une médiatrice d’un triangle est la médiatrice de l’un de ses côtés.
La droite (d) est une médiatrice du triangle ABC. En effet, (d) est médiatrice du segment [AB].

Bissectrice d’un triangle
Une bissectrice d’un triangle est la bissectrice de l’un de ses angles.
La demi-droite (d) est une bissectrice du triangle ABC. En effet, (d) est bissectrice de l’angle BAC.

2.8. Quadrilatères

<table>
<thead>
<tr>
<th>Définition et représentation</th>
<th>Caractéristiques</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nature</th>
<th>Définition</th>
<th>Représentation</th>
<th>Liens avec les autres quadrilatères particuliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapèze</td>
<td>Un trapèze est un quadrilatère dont 2 côtés opposés sont parallèles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallélogramme</td>
<td>Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles.</td>
<td></td>
<td>Un parallélogramme est également un trapèze.</td>
</tr>
</tbody>
</table>
Losange

Un losange est un quadrilatère dont les 4 côtés ont la même longueur.

Un losange est également un parallélogramme.

Rectangle

Un rectangle est un quadrilatère dont les 4 angles sont droits.

Un rectangle est également un parallélogramme.

Carré

Un carré est un quadrilatère dont les 4 côtés ont la même longueur et les quatre angles sont droits.

Un carré est également un parallélogramme, un rectangle et un losange.

Médiane d’un quadrilatère

<table>
<thead>
<tr>
<th>Définition</th>
<th>Représentation</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Une médiane d’un quadrilatère est un segment reliant les milieux des deux côtés opposés.</td>
<td></td>
<td>Le segment [IK] est une médiane du quadrilatère ABCD, de même que le segment [JL].</td>
</tr>
</tbody>
</table>

Médiane d’un rectangle

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Représentation</th>
<th>Exemple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Une médiane d’un rectangle partage ce rectangle en deux figures superposables.</td>
<td></td>
<td>Le segment [IK] est une médiane du rectangle ABCD, de même que le segment [JL]. Les figures ABJL et JLDC sont superposables ainsi que les figures ADKI et KIBC.</td>
</tr>
</tbody>
</table>

Longueur et largeur d’un rectangle

La plus grande des deux dimensions d’un rectangle est appelée « longueur » et la plus petite est appelée « largeur ».
La distance AB est la longueur du rectangle ABCD, de même que la distance CD. La distance AD est la largeur du rectangle ABCD, de même que la distance BC.

Propriétés des quadrilatères particuliers

<table>
<thead>
<tr>
<th>Nature</th>
<th>Représentation</th>
<th>Propriétés des côtés et des angles</th>
<th>Propriétés des diagonales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallélogramme</td>
<td></td>
<td>Les côtés opposés sont parallèles. Les côtés opposés ont la même longueur. Les angles opposés sont égaux.</td>
<td>Les diagonales ont le même milieu.</td>
</tr>
</tbody>
</table>
| Losange | ![Losange](image2) | Les côtés opposés sont parallèles. Les 4 côtés ont la même longueur. Les angles opposés sont égaux. | Les diagonales :
- ont le même milieu ;
- sont perpendiculaires. |
| Rectangle | ![Rectangle](image3) | Les côtés opposés sont parallèles. Les côtés opposés ont la même longueur. Les 4 angles sont droits. | Les diagonales :
- ont le même milieu ;
- ont la même longueur. |
| Carré | ![Carré](image4) | Les côtés opposés sont parallèles. Les 4 côtés ont même longueur. Les 4 angles sont droits. | Les diagonales :
- ont le même milieu ;
- sont perpendiculaires ;
- ont la même longueur. |
3. CONDITIONS NÉCESSAIRES ET CONDITIONS SUFFISANTES

Cette partie est appliquée au cas des quadrilatères. Le tableau précédent présente les propriétés des quadrilatères particuliers. Une figure qui ne vérifie pas ces propriétés n’est nécessairement pas un quadrilatère particulier de la nature indiquée.

Ces propriétés sont ainsi des **conditions nécessaires** pour qu’un quadrilatère soit d’une nature donnée. Par exemple, le tableau indique qu’un carré a des diagonales de même longueur. On en déduit que tout quadrilatère qui n’a pas les diagonales de même longueur ne peut pas être un carré. Le fait d’avoir des diagonales de même longueur est ainsi une condition nécessaire pour qu’une figure donnée soit un carré.

Réciproquement, le fait qu’un quadrilatère vérifie l’une des propriétés du tableau du paragraphe précédent peut ne pas suffire pour qu’il soit de la nature indiquée. Pour s’assurer qu’un quadrilatère soit d’une nature donnée, il faut qu’il vérifie un ensemble de conditions. Ces conditions sont des **conditions suffisantes** pour qu’il soit de la nature voulue. Par exemple, le fait d’avoir quatre angles droits ne suffit pas à ce que le quadrilatère soit un carré comme le montre l’existence de rectangles qui ne sont pas des carrés. En revanche, le fait d’avoir quatre angles droits et quatre côtés de même longueur suffit à ce que le quadrilatère soit un carré. De même, le fait d’avoir quatre angles droits et deux côtés consécutifs de même longueur suffit à ce que le quadrilatère soit un carré.

Certaines **conditions sont à la fois nécessaires et suffisantes** pour qu’un quadrilatère soit d’une nature donnée. Par exemple, être un parallélogramme ayant un angle droit est une condition à la fois suffisante et nécessaire pour être un rectangle.

D’une façon générale, les **conditions nécessaires et les conditions suffisantes ne sont pas corrélées**. Par exemple, pour être un rectangle :

- être un parallélogramme ayant un angle droit est une condition à la fois suffisante et nécessaire (comme indiqué ci-dessus) ;
- être un carré constitue une condition suffisante mais non nécessaire (puisque tous les rectangles ne sont pas des carrés) ;
- avoir des diagonales de même milieu ne constitue pas une condition suffisante (comme le montre l’existence de parallélogrammes sans angle droit) mais constitue une condition nécessaire ;
- avoir quatre côtés de même longueur ne constitue pas une condition suffisante (comme le montre l’existence de losanges sans angle droit) mais constitue une condition nécessaire (puisque tous les rectangles n’ont pas les quatre côtés de même longueur).
Conditions suffisantes les plus courantes

Nous ne présentons ici que les conditions suffisantes couramment utilisées dans les classes. D’autres existent, mais elles ne sont pas mentionnées ici.

<table>
<thead>
<tr>
<th>Nature</th>
<th>Représentation</th>
<th>Conditions suffisantes portant sur les côtés et les angles</th>
<th>Conditions suffisantes portant sur les diagonales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallélogramme</td>
<td></td>
<td>Si les côtés opposés sont parallèles, alors le quadrilatère est un parallélogramme. Si les côtés opposés ont la même longueur, alors le quadrilatère est un parallélogramme. Si les angles opposés sont égaux, alors le quadrilatère est un parallélogramme.</td>
<td>Si les diagonales ont le même milieu, alors le quadrilatère est un parallélogramme.</td>
</tr>
<tr>
<td>Losange</td>
<td></td>
<td>Si les 4 côtés ont la même longueur, alors le quadrilatère est un losange.</td>
<td>Si les diagonales ont le même milieu et sont perpendiculaires, alors le quadrilatère est un losange.</td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td>Si les 4 angles sont droits, alors le quadrilatère est un rectangle.</td>
<td>Si les diagonales ont le même milieu et la même longueur, alors le quadrilatère est un rectangle.</td>
</tr>
<tr>
<td>Carré</td>
<td></td>
<td>Si les 4 côtés ont la même longueur et les 4 angles sont droits, alors le quadrilatère est un carré.</td>
<td>Si les diagonales ont le même milieu, ont la même longueur et sont perpendiculaires, alors le quadrilatère est un carré.</td>
</tr>
</tbody>
</table>
1. PRÉCISIONS TERMINOLOGIQUES

Les parties suivantes détaillent la manipulation des instruments et leur utilisation pour construire les représentations d’objets géométriques et de figures.

Nos explications mêlent ainsi :
– des objets mathématiques abstraits comme une droite ;
– des traces sur le papier, comme un trait qui représente une droite ;
– des objets matériels, comme la règle ou l’équerre.

Pour ne pas alourdir nos commentaires, notre discours confondra :
– l’objet mathématiques abstrait, comme une droite ;
– et sa représentation, comme le trait qui la représente.

Ainsi, nous écrirons :
– Placer l’équerre le long de la droite au lieu de Placer l’équerre le long du trait qui représente la droite ;
– Faire en sorte que la règle passe par A au lieu de Faire en sorte que la règle passe par la trace qui représente A.

2. SUPPORT DE DESSIN

Bien que ce livret soit centré sur les objets géométriques, leurs propriétés et l’utilisation des instruments, il ne peut cependant pas faire l’économie d’évoquer le support de dessin qui influe sur l’apprentissage des propriétés et des instruments.

Deux supports, le papier quadrillé et la feuille blanche, sont présentés ci-dessous avec leurs enjeux didactiques. Ils constituent des supports de travail différents qui se distinguent par la place qu’ils donnent aux propriétés et aux instruments.

Les considérations qui suivent doivent être adaptées à la réalité des classes. Les feuilles blanches ne sont pas toujours disponibles et le quadrillage des cahiers des élèves comprend des interlignes qui ne sont pas retenus ici. Il importe néanmoins qu’un enseignant prenne connaissance des conséquences didactiques de l’utilisation de tel ou tel support et en tienne compte pour organiser ses situations d’apprentissage.

Le papier quadrillé que nous présentons est fondé sur un réseau quadrillé à mailles carrées. Signalons que d’autres mailles peuvent être fondées sur d’autres formes et donner par exemple des réseaux quadrillés à mailles triangulaires, hexagonales… De même, un autre type de support, le papier pointé propose juste les nœuds du quadrillage (sous forme de points), sans marquage des faisceaux de droites. Comme le papier quadrillé,
le papier pointé peut s’appuyer sur des réseaux à mailles carrées, triangulaires, hexagonales… Si ces divers types de papier diffèrent, leurs conséquences sur le plan didactique sont analogues aux analyses que l’on peut développer pour les réseaux à mailles carrées que nous avons choisies ici.

■ Quelques généralités

<table>
<thead>
<tr>
<th>Type de support</th>
<th>Papier quadrillé</th>
<th>Feuille blanche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Représentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Méthode de construction</td>
<td>On utilise les faisceaux de droites et les nœuds du quadrillage.</td>
<td>Le recours aux instruments de géométrie est nécessaire.</td>
</tr>
<tr>
<td>Instruments utilisés</td>
<td>Dans beaucoup de constructions, la règle suffit. Selon les constructions, le quadrillage peut rendre inutile le recours aux autres instruments.</td>
<td>Tous les instruments usuels peuvent être nécessaires.</td>
</tr>
</tbody>
</table>

■ Quelques constructions qui montrent que le recours aux instruments n’est pas le même selon le support utilisé :

<table>
<thead>
<tr>
<th>Type de support</th>
<th>Papier quadrillé</th>
<th>Feuille blanche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracé de perpendiculaires</td>
<td>On prend 2 droites de directions différentes du réseau quadrillé. La règle suffit.</td>
<td>On utilise la règle et l’équerre.</td>
</tr>
<tr>
<td>Mesure d’un segment</td>
<td>On compte le nombre de carreaux.</td>
<td>On utilise la règle graduée.</td>
</tr>
</tbody>
</table>
Éléments d’un bilan didactique

<table>
<thead>
<tr>
<th>Type de support</th>
<th>Papier quadrillé</th>
<th>Feuille blanche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Démarche</td>
<td>La démarche relève d’une approche perceptive. L’information contenue dans le quadrillage assure la validité des figures.</td>
<td>La démarche relève d’une approche instrumentée. L’absence d’information issue du support nécessite le recours aux instruments.</td>
</tr>
<tr>
<td>Type de support</td>
<td>Papier quadrillé</td>
<td>Feuille blanche</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Propriétés</td>
<td>Elles sont utilisées en acte, c’est-à-dire sans être formulées, ni même pensées explicitement. La construction d’une figure se fait à partir de sa perception visuelle.</td>
<td>Il est nécessaire de choisir explicitement les propriétés que l’on va utiliser et qui vont déterminer les instruments dont on va se servir.</td>
</tr>
<tr>
<td>Bilan didactique</td>
<td>Le papier quadrillé permet des constructions rapides et à « moindre frais » sur le plan didactique. Son utilisation convient pour initier à la géométrie, par exemple au CP. Elle convient également pour obtenir rapidement des figures et traiter des questions autres que la construction, comme par exemple, au CM, les propriétés des figures particulières.</td>
<td>La feuille blanche exige que les constructions soient réalisées à l’aide de propriétés précises et des instruments afférents. Elle représente un cadre très pertinent pour confronter l’élève à ses connaissances. Elle offre aux élèves l’occasion de mieux s’approprier les propriétés, d’en saisir l’importance, les enjeux et les potentialités. La feuille blanche est un support recommandé dès que l’on vise l’utilisation des instruments par les élèves.</td>
</tr>
</tbody>
</table>

3. MANIPULATION DES INSTRUMENTS

Dans cette partie, nous décrivons les différents instruments de géométrie et nous illustrons leur manipulation à travers différentes constructions.

3.1. Compas : tracés de cercle

- **Présentation du compas**

 Un compas comporte 2 branches : l’une porte la pointe du compas, l’autre le crayon.

 Il sert à tracer des cercles, des arcs de cercle ou à reporter des longueurs.
Exemple 1 d’utilisation du compas : tracé d’un cercle étant donné son centre et un point par lequel il passe

1. On se donne 2 points A et B. Il s’agit de tracer le cercle de centre A et passant par B.

2. Planter la pointe du compas sur le point A.
Attention : le compas doit être sur un plan vertical par rapport à celui de la feuille.

3. Ajuster l’écartement du compas pour que le crayon se trouve sur le point B.

4. Pencher légèrement le compas pour tracer le cercle.

5. Tracé du cercle de centre A et passant par B.
- **Exemple 2 d’utilisation du compas** : tracé d’un cercle étant donné son centre et son rayon

Le cercle de centre A et de rayon donné (5 cm par exemple) se trace en adaptant les étapes décrites à l’exemple 1. Il suffit, lors de l’étape 3, de mesurer, à l’aide la règle graduée, un écartement de compas égal à 5 cm.

- **Exemple 3 d’utilisation du compas** : tracé d’un cercle étant donné son centre

Un cercle de centre A se trace en adaptant les étapes décrites à l’exemple 1. Il suffit, lors de l’étape 3, de prendre un écartement quelconque du compas.

3.2. Équerre : tracés de perpendiculaires (avec l’aide de la règle)

- **Présentation de l’équerre**

Une équerre a une forme triangulaire. Elle sert à tracer des angles droits et à vérifier qu’un angle est droit.

Une équerre possède 2 angles aigus et un angle droit. Il est important de repérer l’angle droit car il sert à placer l’équerre à bon escient.
Exemple 1 d’utilisation de l’équerre, assistée de la règle : tracé de la perpendiculaire à une droite passant par un point, le point n’appartenant pas à la droite.

1. On se donne un point A et une droite (d).
 Il s’agit de tracer la perpendiculaire à (d) passant par A.

2. Placer l’équerre le long de la droite (d).

3. Faire glisser l’équerre le long de la droite jusqu’à atteindre le point A.

4. Placer la règle le long de l’équerre.

5. Enlever l’équerre.

6. Tracer le long de la règle.
7 Marquer l’angle droit.

8 Tracé de la droite perpendiculaire à (d) et passant par A.

- **Exemple 2 d’utilisation de l’équerre, assistée de la règle** : tracé de la perpendiculaire à une droite passant par un point, le point appartenant à la droite

Dans le cas où le point A appartient à la droite (d), la perpendiculaire à (d) passant par A se trace en adaptant les étapes décrites à l’exemple 1. Il suffit, lors de l’étape 3, de faire glisser l’équerre le long de la droite (d) jusqu’à ce que le point A soit au pied de l’équerre.

- **Exemple 3 d’utilisation de l’équerre, assistée de la règle** : tracé d’une perpendiculaire à une droite

Dans le cas où seule une droite (d) est donnée, le tracé d’une perpendiculaire à (d) se trace en adaptant les étapes décrites à l’exemple 1. Il suffit, lors de l’étape 2, de placer l’équerre n’importe où le long de la droite.

3.3. **Règle : tracés de segments, droites et demi-droites**

- **Présentation de la règle**

Une règle est utilisée pour tracer des segments, des droites, des demi-droites, des côtés de polygones.

Elle n’a pas de graduation.
Exemple 1 d’utilisation de la règle : tracé d’un segment, ses deux extrémités étant données

1. On se donne 2 points A et B. Il s’agit de tracer le segment [AB].
2. Faire en sorte que la règle passe par A.
3. Faire en sorte que la règle passe également par B.
4. Tracer le segment [AB].
5. Tracé du segment [AB].

Exemple 2 d’utilisation de la règle : tracé d’une droite ou d’une demi-droite qui passe par 2 points donnés

Une droite passant par 2 points se trace en adaptant les étapes décrites à l’exemple 1. Une demi-droite dont l’origine et un point sont donnés se trace également en adaptant les étapes décrites à l’exemple 1. Il suffit, lors de l’étape 4, de continuer à tracer au-delà du point qui n’est pas l’origine (pour la demi-droite) ou des deux points (pour une droite).
3.4. Règle graduée : mesure de distance et tracé d’un point sur une droite à une distance donnée d’un autre

- Présentation de la règle graduée

Une règle graduée comprend une graduation (généralement en centimètres et millimètres) qui commence à « 0 ».

![Règle graduée](image)

Comme la règle, elle sert à tracer des segments, des droites, des demi-droites, des côtés de polygones.

Elle sert également à mesurer des distances entre des points ou à placer un point à une distance donnée d’un autre.

- Exemple 1 d’utilisation de la règle graduée : mesure de la distance entre 2 points

1. On se donne 2 points A et B. Il s’agit de mesurer la distance entre les points A et B.

 ![Exemple 1](image)

2. Superposer l’origine de la graduation de la règle et le point A.

 ![Exemple 1](image)

3. Faire en sorte que la règle passe également par B.

 ![Exemple 1](image)

4. Lire la valeur de la graduation qui correspond au point B. Il s’agit ici du nombre 6.

 ![Exemple 1](image)
La distance AB mesure 6 cm.
N.B. : le dessin n’est pas à l’échelle.

Exemple 2 d’utilisation de la règle graduée : tracé d’un point sur une droite (d) dont la distance à un point donné de la droite est connue

1. On se donne une droite (d) et un point A sur cette droite. Il s’agit de tracer un point B sur la droite (d) qui soit situé à 6 cm de A.
2. Superposer l’origine de la graduation de la règle et le point A.

3. Placer également la règle sur la droite (d).
4. Repérer la valeur de la mesure, soit 6 pour notre exemple, sur la graduation de la règle.

5. Marquer sur la feuille le point B correspondant.
6. Tracé d’un point B sur la droite (d) qui soit situé à 6 cm de A.
3.5. Rapporteur : tracés d’angles de mesures données

■ Présentation du rapporteur

Le rapporteur est un instrument complexe et non standardisé.
Il sert à mesurer des angles ou à tracer des angles d’une mesure donnée.
N. B. : Il y en a de plusieurs sortes. Si le tien est différent, il faut y retrouver toutes les indications décrites ci-dessous.

Le rapporteur comprend deux graduations.
Il faut en premier lieu repérer les origines des 2 graduations.
Remarques :
- En général, on repère les origines à l’aide les valeurs « 0 ».
- Il peut parfois manquer une valeur « 0 » lorsque les 2 graduations sont « fusionnées » sur une seule.
 L’origine manquante correspond alors au nombre 180.

Il faut ensuite repérer le centre du rapporteur.
On l’obtient en traçant une ligne imaginaire entre les origines des 2 graduations et en prenant le milieu des 2 origines.
Remarque :
Selon les rapporteurs, le centre peut être sur le bord inférieur bas du rapporteur, sur le bord supérieur de la barre diamétrale ou plus à l’intérieur de l’instrument. Tout dépend de la place des origines sur le rapporteur.
Il faut ensuite repérer **le sens et les valeurs de la graduation 1.**

Remarque :
Pour s’assurer d’avoir bien compris, il suffit de compter de 10° en 10° depuis l’origine de la graduation.

Il faut enfin repérer **le sens et les valeurs de la graduation 2.**

Remarque :
Pour s’assurer d’avoir bien compris, il suffit de compter de 10° en 10° depuis l’origine de la graduation.

- **Exemple 1 d’utilisation du rapporteur** : tracé d’un angle de mesure 30°, la demi-droite donnée étant « orientée » à droite.

 ① On se donne un point A et une demi-droite [(Ax)].
 Il s’agit de tracer un angle \(\overline{AXA} \) de mesure 30°.

 ② Placer le centre du rapporteur sur le point A.
3. Superposer également la ligne des origines du rapporteur avec la demi-droite \([Ax]\).

4. Repérer laquelle des 2 origines des graduations appartient à la demi-droite \([Ax]\).

Remarque :
Ici, il s’agit de l’origine de la graduation 2. Elle est en effet placée sur la demi-droite \([Ax]\), l’autre est dans une zone sans tracé.

5. Repérer les valeurs et le sens de la graduation.

Remarque :
Pour la suite, il faut ne se référer qu’à cette seule graduation.

6. Repérer la valeur 30° sur cette graduation et laisser une marque sur la feuille.

Remarque :
Il est fortement conseillé de compter de 10° en 10° depuis l’origine jusqu’à la valeur voulue pour ne pas se tromper de graduation.
7 Retirer le rapporteur et ajuster la règle pour qu'elle passe par le point A et la marque laissée sur la feuille.

8 Tracer la demi-droite [Ay).

9 Tracé de l'angle \overline{xAy} de mesure 30°.

Exemple 2 d'utilisation du rapporteur : tracé d’un angle de mesure 120°, la demi-droite donnée étant « orientée » à droite

1. On se donne un point A et une demi-droite [Ax).
 Il s’agit de tracer un angle \overline{xAy} de mesure 120°.

Les étapes 2 à 5 sont identiques à l’exemple 1.
La configuration change à partir de l’étape 6.
6. Repérer la valeur 120° sur cette graduation et laisser une marque sur la feuille.

Remarque :

Il est fortement conseillé de compter de 10° en 10° depuis l’origine jusqu’à la valeur voulue pour ne pas se tromper de graduation.

7. Retirer le rapporteur et ajuster la règle pour qu’elle passe par le point A et la marque laissée sur la feuille.

8. Tracer la demi-droite \([Ay]\).

9. Tracé de l’angle \(\vec{A}y\) de mesure 120°.
Exemple 3 d’utilisation du rapporteur : tracé d’un angle de mesure 30°, la demi-droite donnée étant « orientée » à gauche.

1. On se donne un point A et une demi-droite [Ax]. Il s’agit de tracer un angle $\angle xAy$ de mesure 30°.

2. Placer le centre du rapporteur sur le point A.

3. Superposer également la ligne des origines du rapporteur avec la demi-droite [Ax].

4. Repérer laquelle des 2 origines des graduations appartient à la demi-droite [Ax].

 Remarque : Ici, il s’agit de l’origine de la graduation 1. Elle est en effet placée sur la demi-droite [Ax], l’autre est dans une zone sans tracé.

5. Repérer les valeurs et le sens de la graduation.

 Remarque : Pour la suite, il faut ne se référer qu’à cette seule graduation.

6. Repérer les valeurs et le sens de la graduation.

 Remarque : Pour la suite, il faut ne se référer qu’à cette seule graduation.
6. Repérer la valeur 30° sur cette graduation et laisser une marque sur la feuille.

Remarque : Il est fortement conseillé de compter de 10° en 10° depuis l’origine jusqu’à la valeur voulue pour ne pas se tromper de graduation.

7. Retirer le rapporteur et ajuster la règle pour qu’elle passe par le point A et la marque laissée sur la feuille.

8. Tracer la demi-droite [Ay).

9. Tracé de l’angle \overrightarrow{xAy} de mesure 30°.
Exemple 4 d’utilisation du rapporteur : tracé d’un angle de mesure 120°, la demi-droite donnée étant « orientée » à gauche

1. On se donne un point A et une demi-droite [Ax].
 Il s’agit de tracer un angle \(\overline{xAy}\) de mesure 120°.

 - **Les étapes 2 à 5 sont identiques à l’exemple 1.**
 - **La configuration change à partir de l’étape 6.**

2. Repérer la valeur 120° sur cette graduation et laisser une marque sur la feuille.

 Remarque : Il est fortement conseillé de compter de 10° en 10° depuis l’origine jusqu’à la valeur voulue pour ne pas se tromper de graduation.

3. Tracer la demi-droite [Ay].

4. Tracé de l’angle \(\overline{xAy}\) de mesure 120°.

5. Retirer le rapporteur et ajuster la règle pour qu’elle passe par le point A et la marque laissée sur la feuille.
3.6. Règle et équerre : tracé de parallèles à une droite

- Exemple 1 d’utilisation de la règle et de l’équerre : tracé de la parallèle à une droite passant par un point

1. On se donne un point A et une droite (d). Il s’agit de tracer la parallèle à (d) passant par A.

2. Placer l’équerre le long de la droite comme indiqué sur le dessin.

3. Placer la règle le long de l’équerre.

4. Faire glisser l’équerre le long de la règle jusqu’à atteindre le point A.

5. Retirer la règle sans bouger l’équerre.

6. Tracer la parallèle voulue.
Tracer le trait le plus long possible.

Retirer l’équerre. À l’aide de la règle, on va chercher à prolonger le trait qui représente la parallèle.

Ajuster la règle le long du trait qui représente la parallèle et on le prolonge.

Tracé de la parallèle à (d) passant par A.

Exemple 2 d’utilisation de la règle et de l’équerre : tracé d’une parallèle à une droite donnée

Dans le cas où seule une droite (d) est donnée, le tracé d’une parallèle à (d) se trace en adaptant les étapes décrites à l’exemple 1. Il suffit, lors de l’étape 4, de placer l’équerre n’importe où le long de la règle.

4. CONSTRUCTIONS À L’AIDE DES INSTRUMENTS

Dans cette partie, nous décrivons différentes constructions. Il y a deux particularités par rapport à la partie précédente :

1. Ces constructions nécessitent l’utilisation d’un ou de plusieurs instruments de façon répétée et dans des configurations contraintes qui peuvent être « brouillées » par la présence de nombreux objets géométriques. Par exemple, le tracé avec la règle et l’équerre de la parallèle à une droite passant par un point peut se faire alors que plusieurs droites et plusieurs points existent sur la figure, ce qui demande de bien repérer la droite et le point en jeu.
2. Ces constructions nécessitent d’invoquer des propriétés, puisque les objets géométriques à construire ne sont pas élémentaires (comme des cercles, des segments, des droites, des demi-droites, des parallèles, des perpendiculaires, des angles) mais plus complexes (tels que les triangles isocèles, équilatéraux, les rectangles, parallélogrammes, losanges, carrés).

La démarche consiste donc à déterminer, à chaque étape de la construction, la propriété que l’on veut utiliser (par exemple, les côtés opposés d’un parallélogramme sont parallèles) et d’en déduire les instruments nécessaires (par exemple, la règle et l’équerre pour tracer une parallèle).

Nous distinguons ci-dessous les constructions simples, lorsque la suite des étapes de construction est assez aisée à visualiser, et les constructions complexes, plus contraintes et qui nécessitent de réfléchir à la chronologie de la construction avant de la réaliser.

Dans les exemples qui suivent, nous proposons :

– un énoncé ;
– une figure qui mentionne les étapes de construction, numérotées selon l’ordre de leur exécution ;
– une description des étapes de construction, numérotées elles aussi ;
– les propriétés mobilisées lors de la construction.

Les instruments utilisés ne sont pas mentionnés car leurs cas d’utilisation sont simples et peuvent être facilement retrouvés en se référant à la partie précédente.

4.1. Constructions simples

■ Exemple 1 de construction simple : construction d’un triangle isocèle avec la règle graduée et le compas

<table>
<thead>
<tr>
<th>Énoncé</th>
<th>Construire un triangle isocèle ABC tel que AB = 3 cm et BC = AC = 5 cm.</th>
</tr>
</thead>
</table>

Figure avec indication des étapes de construction

Remarques :
– La figure n’est pas à l’échelle.
– Les numéros mentionnés sur la figure renvoient aux numéros des étapes de construction ci-dessous.
CONNAÎTRE ET EXPLOITER LES OBJETS GÉOMÉTRIQUES.

Exemple 2 de construction simple : construction d’un triangle équilatéral avec la règle graduée et le compas

Un triangle équilatéral se construit en adaptant les étapes décrites à l’exemple 1. La propriété utilisée est la suivante : *Un triangle équilatéral a 3 côtés de même longueur.* Il suffit donc, lors des étapes 1, 2 et 3 de l’exemple 1, de prendre la même longueur comme longueur du segment initial et comme rayons des 2 cercles.

Exemple 3 de construction simple : construction d’un parallélogramme avec la règle graduée et le compas

Exemple 4 de construction simple : construction d’un rectangle avec la règle graduée et le compas

Un rectangle se construit en adaptant les étapes décrites à l’exemple 3. La propriété utilisée est la suivante : *Un rectangle a 4 angles droits et des côtés opposés de même...*
longueur: Il suffit donc, lors de l’étape 2, de tracer un point D qui soit situé sur la perpendiculaire à (AB) et qui passe par A.

■ **Exemple 5 de construction simple**: construction d’un losange avec la règle graduée et le compas

Un losange se construit en adaptant les étapes décrites à l’exemple 3. La propriété utilisée est la suivante : *Un losange a 4 côtés de même longueur*. Il suffit donc, lors des étapes 1, 2, 3 et 4, de prendre la même longueur comme longueur des côtés et comme rayons des 2 cercles.

■ **Exemple 6 de construction simple**: construction d’un carré avec la règle graduée et le compas

Un carré se construit en adaptant les étapes décrites à l’exemple 3. La propriété utilisée est la suivante : *Un carré a 4 côtés de même longueur et 4 angles droits*. Il suffit donc :
- lors de l’étape 2, de tracer un point D qui soit situé sur la perpendiculaire à (AB) et qui passe par A;
- lors des étapes 1, 2, 3 et 4, de prendre la même longueur comme longueur des côtés et comme rayons des 2 cercles.

■ **Exemple 7 de construction simple**: construction de la médiatrice d’un segment avec la règle et le compas

<table>
<thead>
<tr>
<th>Énoncé</th>
<th>Construire la médiatrice d’un segment [AB].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure avec indication des étapes de construction</td>
<td>Remarque : Les numéros mentionnés sur la figure renvoient aux numéros des étapes de construction ci-dessous.</td>
</tr>
</tbody>
</table>
Étapes de la construction

On se donne un segment [AB].
1. Tracer un arc de cercle de centre B et de rayon supérieur à la moitié de la distance AB.
2. Tracer un arc de cercle de centre B et de même rayon que l’arc de cercle de l’étape 1.
3. Appeler M l’un des points d’intersection des 2 arcs de cercles des étapes 1 et 2.
4. Appeler N le second point d’intersection des 2 arcs de cercles des étapes 1 et 2.
5. Tracer la droite (MN).

Propriété(s) utilisée(s)
La médiatrice d’un segment est l’ensemble des points situés à la même distance des extrémités de ce segment.

N.B. : Comme les arcs de cercles ont le même rayon, leurs points d’intersection M et N sont bien situés à la même distance des points A et B, extrémités du segment.

Exemple 8 de construction simple : construction de la médiatrice d’un segment avec la règle graduée et l’équerre

Énoncé
Construire la médiatrice d’un segment [AB].

Figure avec indication des étapes de construction
Remarque :
Les numéros mentionnés sur la figure renvoient aux numéros des étapes de construction ci-dessous.

<table>
<thead>
<tr>
<th>Étapes de la construction</th>
<th>Énoncé</th>
<th>Propriété(s) utilisée(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On se donne un segment [AB].</td>
<td>Construire la médiatrice d’un segment [AB].</td>
<td>La médiatrice d’un segment est la droite perpendiculaire à ce segment et qui passe par son milieu.</td>
</tr>
<tr>
<td>Tracer la perpendiculaire à (AB) qui passe par I.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exemple 9 de construction simple : construction de la bissectrice d’un angle à l’aide de la règle et du compas

Énoncé	Construire la bissectrice de l’angle $\angle A\bar{y}$.
Figure avec indication des étapes de construction	*Les numéros mentionnés sur la figure renvoient aux numéros des étapes de construction ci-dessous.*
Étapes de la construction	On se donne un angle $\angle A\bar{y}$.
1. Tracer un arc de cercle de centre A.
2. Appeler M le point d’intersection de cet arc de cercle avec la demi-droite $[Ay]$.
3. Appeler N le point d’intersection de cet arc de cercle avec la demi-droite $[Ax]$.
4. Tracer un arc de cercle de centre M.
5. Tracer un arc de cercle de centre N et de même rayon que l’arc de cercle de l’étape 4.
| **Propriété(s) utilisée(s)** | *N. B. : La propriété utilisée n’est pas rédigée dans ce livret car elle est difficile. Elle concerne le fait que la bissectrice est l’ensemble des points situés à la même distance des 2 demi-droites qui forment l’angle.*

Exemple 10 de construction simple : construction de la bissectrice d’un angle à l’aide de la règle et du rapporteur

Énoncé	Construire la bissectrice de l’angle $\angle A\bar{y}$.
Figure avec indication des étapes de construction	*Les numéros mentionnés sur la figure renvoient aux numéros des étapes de construction ci-dessous.*
Étapes de la construction

<table>
<thead>
<tr>
<th>Étapes de la construction</th>
<th>On se donne un angle \overline{xAy}.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Mesurer l’angle \overline{xAy}.</td>
</tr>
<tr>
<td></td>
<td>2. Tracer l’angle dont l’un des côtés est la demi-droite $[Ax]$ et qui mesure la moitié de l’angle \overline{xAy}.</td>
</tr>
</tbody>
</table>

Propriété(s) utilisée(s)

| Propriété(s) utilisée(s) | La bissectrice d’un angle est la demi-droite dont l’origine est le sommet de l’angle et qui le partage en deux angles de même mesure. |

4.2. Exemple de constructions complexes

Contrairement aux constructions simples, les constructions complexes ont des contraintes qui rendent difficile la visualisation des étapes de construction. Pour déterminer la chronologie de construction, il est utile de réaliser une figure à main levée qui comporte toutes les spécifications voulues.

Le tableau ci-dessous propose ainsi :

- un énoncé ;
- une figure à main levée ;
- une figure qui mentionne les étapes de construction, numérotées selon l’ordre de leur exécution ;
- une description des étapes de construction, numérotées elles aussi ;
- les instruments utilisés assortis de la référence aux tracés en jeu qu’il est facile de retrouver dans la partie précédente ;
- les propriétés mobilisées lors de la construction.

Deux présentations de l’exemple suivant sont proposées :

- la présentation 1 reprend le même cadre qu’au paragraphe précédent en rajoutant les lignes « figure à main levée » et « instruments utilisés » ;
- la présentation 2 montre le déroulement chronologique de la construction, à la manière d’un « film », en affectant à chaque étape les instruments et propriétés utilisés.

Exemple de constructions complexes (présentation 1) : construction d’un rectangle connaissant la longueur d’un de ses côtés et la mesure de l’angle entre un de ses côtés et l’une de ses diagonales

<table>
<thead>
<tr>
<th>Énoncé</th>
<th>Construire un rectangle $ABCD$ dont le côté $[AB]$ mesure 6 cm et l’angle \overline{CAB} mesure 20°.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure à main levée</td>
<td>On trace à main levée la figure demandée et on y porte les mesures connues. La visualisation de l’ensemble de la figure permet de réfléchir à la chronologie de la construction et d’en définir les différentes étapes.</td>
</tr>
</tbody>
</table>
Étapes de la construction

1. Tracer le segment \([AB]\) de longueur 6 cm.
2. Tracer la demi-droite \([Ax]\) telle que l’angle \(BAx\) mesure 20°.
3. Tracer la perpendiculaire à \((AB)\) qui passe par \(B\).
4. Tracer le point \(C\), intersection de la demi-droite \([Ax]\) tracée à l’étape 2 et de la perpendiculaire tracée à l’étape 3.
5. Tracer la perpendiculaire à \((AB)\) qui passe par le point \(A\).
6. Tracer la parallèle à la droite \((AB)\) qui passe par le point \(C\).
7. Tracer le point \(D\), intersection de la perpendiculaire tracée à l’étape 5 et de la parallèle tracée à l’étape 6.

Instruments utilisés

- La règle graduée : tracé d’un segment d’une longueur donnée.
- Le rapporteur : tracé d’un angle d’une mesure donnée.
- L’équerre et la règle : tracé de la perpendiculaire à une droite.
- L’équerre et la règle : tracé de la parallèle à une droite.

Propriétés utilisées

- Le rectangle a quatre angles droits.
- Le rectangle est un parallélogramme.
- Un parallélogramme a ses côtés opposés parallèles.

Exemple de constructions complexes (présentation 2) : construction d’un rectangle connaissant la longueur d’un de ses côtés et la mesure de l’angle entre un de ses côtés et l’un de ses diagonales

Énoncé

Construire un rectangle \(ABCD\) dont le côté \([AB]\) mesure 6 cm et l’angle \(CAB\) mesure 20°.
1. Tracer le segment [AB] de longueur 6 cm.

Instrument utilisé :
La règle graduée : tracé d'un segment d'une longueur donnée.

2. Tracer la demi-droite [Ax) telle que l'angle BAx mesure 20°.

Instrument utilisé :
Le rapporteur : tracé d'un angle d'une mesure donnée.

3. Tracer la perpendiculaire à (AB) qui passe par B.

Instruments utilisés :
L'équerre et la règle : tracé de la perpendiculaire à une droite.

Propriété utilisée :
Le rectangle a quatre angles droits.

4. Tracer le point C, intersection de la demi-droite [Ax) tracée à l'étape 2 et de la perpendiculaire tracée à l'étape 3.

5. Tracer la perpendiculaire à (AB) qui passe par le point A.

Instruments utilisés :
L'équerre et la règle : tracé de la perpendiculaire à une droite.

Propriété utilisée :
Le rectangle a quatre angles droits.

6. Tracer la parallèle à la droite (AB) qui passe par le point C.

Instruments utilisés :
L'équerre et la règle : tracé de la parallèle à une droite.

Propriétés utilisées :
Le rectangle est un parallélogramme.
Un parallélogramme a ses côtés opposés parallèles.
7 Tracer le point D, intersection de la perpendiculaire tracée à l’étape 5 et de la parallèle tracée à l’étape 6.

5. ÉLÉMENTS DIDACTIQUES

Trois points retiennent ici notre attention.

5.1. Instruments et niveaux de classe

Dès le primaire, les apprenants découvrent progressivement les quatre instruments de géométrie suivants : la règle, la règle graduée, l’équerre, le compas et le rapporteur, selon le tableau ci-après :

<table>
<thead>
<tr>
<th>Niveau de classe</th>
<th>Nouvel instrument introduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>Règle</td>
</tr>
<tr>
<td>CP2</td>
<td>Règle graduée</td>
</tr>
<tr>
<td>CE1</td>
<td>Équerre, compas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau de classe</th>
<th>Nouvel instrument introduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE2</td>
<td></td>
</tr>
<tr>
<td>CM1</td>
<td>Rapporteur</td>
</tr>
<tr>
<td>CM2</td>
<td></td>
</tr>
</tbody>
</table>

Le support de dessin a aussi son importance, comme l’indique le paragraphe 2 du méménto. Certains supports peuvent en effet dispenser de l’utilisation des instruments. Il est par exemple possible de tracer des perpendiculaires sur papier quadrillé sans utiliser l’équerre, qui reste cependant indispensable si l’on se sert d’une feuille blanche.

5.2. Utilisation des instruments au tableau devant la classe

Pour rendre visibles et vivantes les activités d’apprentissage, l’enseignant doit bien se positionner devant le tableau noir et gérer également la position des élèves. Un élève qui ne voit pas les figures du tableau va décrocher et devenir inattentif. S’il ne voit pas les gestes nécessaires à la construction, il ne pourra pas les reproduire quand il travaillera sur son cahier.
L’enseignant doit donc prendre plusieurs dispositions et notamment :
– ne pas tracer les figures au tableau en vraie grandeur (par exemple, un segment de longueur 5 cm dans l’énoncé de l’élève doit être agrandi);
– ne pas gêner la visibilité des élèves et contrôler sa position (tout comme celles des élèves qui passent au tableau durant les manipulations). Il doit se replacer régulièrement de façon à assurer une bonne lisibilité des traces écrites à toute la classe.

5.3. Identification de figures simples dans des figures complexes

Les élèves peuvent avoir du mal à repérer des figures simples dans des figures complexes. C’est pourquoi ce travail doit être accompagné par l’enseignant. Par exemple, dans la figure ci-dessous, le repérage d’un trapèze qui ne soit pas un rectangle peut s’avérer difficile.

Les étapes suivantes peuvent être suivies pour permettre aux élèves d’identifier la figure simple demandée :

ÉTAPE 1 : Découverte et appropriation de la figure complexe.
Cette étape peut passer par des questions posées à toute la classe du type : Que voyez-vous ? Qui peut décrire la figure ? Qui peut citer une figure simple ?

ÉTAPE 2 : Premières identifications de figures simples, tels que des quadrilatères et des triangles.
Cette étape passe par une recherche individuelle des élèves sur leur cahier, suivie d’une correction collective.

ÉTAPE 3 : Rappel de la définition de la nature de la figure cherchée, ici un trapèze qui ne soit pas un rectangle.
Il faut demander aux élèves les définitions d’un rectangle et d’un trapèze et les écrire au tableau. Les élèves recherchent ensuite par binôme la figure voulue dans la figure complexe.
ÉTAPE 4 : Recherche de la figure demandée.
Pour les élèves qui ne trouvent pas, on peut demander à la classe une stratégie. Par exemple, pour trouver un trapèze dans la figure complexe, il faut identifier deux droites parallèles et penser à explorer les directions « horizontales » et « verticales ». Pour les élèves qui ont trouvé, il faut donner d’autres figures simples à déterminer, comme des triangles équilatéraux, tous les rectangles…
1. **S’EXERCER À CONCEVOIR DES ACTIVITÉS POUR LES APPRENANTS**

▶ **Activité 1**

Cette activité est une activité de révision qui te permet de travailler avec tous les triangles et de ne pas te limiter seulement aux triangles particuliers.

Voici quelques notes qu’un enseignant a rédigées pour travailler les triangles avec ses élèves.

Aux étapes 1 et 2, la classe travaille sur les figures produites par les élèves.

À l’étape 3, la classe travaille sur des figures données par l’enseignant.

Étape 1 : Donner l’exercice suivant aux élèves.

CONSIGNE : Construis avec la règle et le feutre, librement sur ta feuille, un triangle quelconque qui n’a aucune propriété particulière.

N.B. : Les élèves doivent dessiner un « grand » triangle afin qu’il puisse être montré ensuite à toute la classe.

Étape 2 : Choisir les figures de quelques élèves. Les afficher et demander aux élèves de retirer les figures qui représentent des triangles particuliers.

Les élèves qui pensent avoir repéré un triangle particulier viennent valider leur hypothèse, devant la classe, avec les instruments collectifs.

Préparer quelques figures particulières à présenter à la classe si jamais aucun élève n’avait produit de triangle particulier.

Étape 3 : Donner l’exercice suivant aux élèves.

CONSIGNE : Voici une planche de triangles numérotés. Indique parmi eux quels sont les triangles particuliers et indique les instruments que tu utilises.

![Diagramme de triangles numérotés](image)
Les questions suivantes visent à t’aider à accompagner tes élèves dans la résolution de cette situation.

- **Questions sur l’étape 1 :**
 a. Quels sont les instruments que l’on va demander aux élèves d’utiliser ?
 Quelle conséquence ce choix a-t-il sur le type d’approche de la géométrie que l’on travaille avec les élèves ?
 b. Quels sont les différents cas de figures auxquels l’on peut s’attendre ?

- **Questions sur l’étape 3 :**
 c. De quels instruments les élèves vont-ils avoir besoin pour déterminer la nature des différents triangles ?
 d. Quelle modalité de travail préconises-tu (en groupe, individuel, collectif, à deux) ? Donne quelques arguments.
 e. Quel est le rôle de l’enseignant pendant que les élèves travaillent ?
 f. Quelle correction collective peux-tu organiser ?
 g. Quelle trace écrite peux-tu donner aux élèves en fin d’activité ?

► **Activité 2**

Cette activité te permet de travailler les angles de même mesure en utilisant le rapporteur et le compas.

Voici l’exercice et le commentaire que te donne un enseignant et que tu te proposes de mettre en place avec tes élèves.

Exercice :

On te donne la figure suivante. Trouve dans cette figure les angles qui ont la même mesure 2 à 2.

![Diagramme de la figure](image)

Commentaire sur le support :

On peut donner aux élèves une figure de grande taille pour qu’ils puissent mesurer les angles avec le rapporteur sans prolonger les traits ou avec des traits déjà prolongés.
Réponds aux questions qui suivent pour parvenir à mettre en œuvre la situation donnée.

a. Quels sont les deux activités préparatoires qu’il te faut prévoir et sous quelle forme ?
b. Quelles sont les étapes de travail que tu peux prévoir pour organiser le travail des élèves ? Décris-les en une phrase.
c. Les angles $\angle FCA$ et $\angle ACB$ ont-ils la même mesure ? Donne des arguments de natures différentes et qu’il est possible de travailler avec les élèves.
d. Les angles $\angle CDA$ et $\angle CAD$ ont-ils la même mesure ? Donne des arguments de natures différentes et qu’il est possible de travailler avec les élèves.

► Activité 3

Cette activité te permet de travailler les propriétés des diagonales des quadrilatères particuliers et les instruments de géométrie.

Voici l’énoncé de l’exercice qu’on te propose de mettre en place avec tes élèves de niveau CM2.

On considère deux segments de droite qui se coupent en O. Précise les configurations possibles permettant aux quadrilatères définis par les extrémités de ces deux segments d’être un rectangle, un carré, un losange ou un parallélogramme.

Il s’agit pour toi d’aider les élèves à utiliser les propriétés des diagonales pour faire les constructions possibles. Pour cela, tu dois répondre aux questions suivantes :

a. Pour quels quadrilatères particuliers les diagonales sont-elles toujours :
 - sécantes en leur milieu et de même longueur ?
 - sécantes en leur milieu et perpendiculaires ?
 - sécantes en leur milieu, de même longueur et perpendiculaires ?
 - sécantes en leur milieu, de longueurs différentes et perpendiculaires ?
 - sécantes en leur milieu, de même longueur et non perpendiculaires ?
 - sécantes en leur milieu et ni de même longueur, ni perpendiculaires ?

b. Quels sont les instruments à utiliser pour la construction de chaque configuration ?

► Activité 4

Cette activité te permet de travailler avec tes élèves sur la fabrication et l’utilisation d’instruments de géométrie réalisés avec du matériel local (de récupération) et qui respecte les utilisations des instruments de géométrie usuels.

Voici un questionnement que se pose l’enseignant d’une classe de CM1.
Au cours d’une leçon de géométrie sur les triangles, l’enseignant constate que la plupart des élèves n’ont pas d’instruments de géométrie. Il décide d’en faire fabriquer avec du matériel local.
Il se pose la question de savoir quels instruments il peut faire fabriquer.
Il se demande de quelle façon il peut aider ses élèves à les fabriquer et à les utiliser pour les constructions géométriques.

Pour traiter le questionnement de l’enseignant, répondez aux questions suivantes :

a. Parmi les instruments susceptibles d’être utilisés pour construire les triangles, donne ceux qu’il sera possible de fabriquer.
b. Pour chaque instrument qu’il est possible de fabriquer, donne le matériel nécessaire à sa fabrication, son procédé de fabrication, ainsi que son utilisation et ce qu’il permet de faire.
c. Explique les étapes d’utilisation des instruments fabriqués dans la construction :
 – d’un triangle quelconque ;
 – d’un triangle équilatéral ;
 – d’un triangle rectangle.

► Activité 5

Après t’avoir guidé sur la conception et la mise en œuvre de situations de géométrie, nous te proposons cette activité afin de vérifier le degré d’assimilation des compétences dans les domaines sus cités.

Tu proposes une activité au niveau CE2 qui te permettra de vérifier si les élèves ont bien maîtrisé la manipulation des instruments et les propriétés pour construire un carré et un rectangle. Tu conçois cette situation suivie de sa démarche d’exploitation.

2. EXEMPLES D’ACTIVITÉS POUR LES ÉLÈVES

► Activité 1

Sur la figure ci-contre, dessine un angle droit dont l’un des côtés est sur la droite tracée et l’autre passe par le point A (n’oublie pas de mettre le signe qui indique la présence d’un angle droit).
► Activité 2

Dans le dessin ci-contre, repasse en rouge les côtés de l’angle droit et entoure les deux segments qui forment un angle aigu.

► Activité 3. Niveau CP

Trouve le nombre de carrés, de rectangles, de ronds et de triangles de la figure.

<table>
<thead>
<tr>
<th>Formes</th>
<th>Nombres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrés</td>
<td></td>
</tr>
<tr>
<td>Rectangles</td>
<td></td>
</tr>
<tr>
<td>Triangles</td>
<td></td>
</tr>
<tr>
<td>Ronds</td>
<td></td>
</tr>
</tbody>
</table>

► Activité 4. Niveau CE

Avec ta règle et ton crayon, complète les formes suivantes et écris le nom de chacune d’elles. Plusieurs réponses sont possibles dans certains cas de figure.

► Activité 5. Niveau CE

La figure à construire est à chaque fois un quadrilatère qui vérifie les égalités suivantes :

I : \(AB = CD = 7 \text{ cm} ; \ AC = BD = 5 \text{ cm} \)

II : \(FG = HI = FH = GI = 10 \text{ cm} \)

III : \(AB = 4 \text{ cm} ; \ BD = 5 \text{ cm} ; \ CD = 10 \text{ cm} ; \ AC = 4 \text{ cm} \)
► Activité 6. Niveau CM

Donne un nom à chacun des triangles ci-après indiqué :

a) Triangle avec un angle droit ;

b) Triangle à 2 côtés de même longueur et 2 angles égaux ;

c) Triangle avec angle droit et 2 côtés de même longueur et 2 angles égaux ;

d) Triangle avec 3 côtés de même longueur et 3 angles égaux.

► Activité 7. Niveau CP

Quelles sont les lignes fermées et les lignes ouvertes ?

Lignes fermées
………………

Lignes ouvertes
………………

► Activité 8. Niveau CE1

Complète les phrases avec les mots suivants : centre, croix, milieu, rayon, diamètre, rayon.

Voici un cercle. Le point marqué par la pointe du compas s’appelle le

On marque le centre par une

La longueur du est égale à l’écartement du compas !

C’est le

Le passe par le centre du cercle.

Il mesure le double du

Le du cercle est le du diamètre.

Attention ! Ne confonds pas les mots « rayon » et « diamètre » ni « centre » et « milieu ».

► Activité 9. Niveau CE2

Construis la figure en respectant les informations proposées ci-après :

– ABC est un triangle ;

– L’angle A\(\widehat{ABC} \) mesure 60° ;

– Le côté [AB] mesure 4 cm.
Activité 10. Niveau CM

Construis un rectangle ABCD de dimensions AB = 6 cm et AD = 4 cm.

Construis ensuite le carré AEFD avec E appartenant au segment [AB]. Quelle est la mesure du côté [AE]?

Le cercle (C) a comme centre le point B et pour rayon le côté [EB].
- Trace le cercle (C).
- Quelle est la nature du triangle EBC?
- Que peut-on dire des angles CEF et BCE?
1. CORRIGÉS DU DIAGNOSTIC

- **Autotest 1**

La bonne réponse est la réponse d. En effet, aucun instrument n’est utilisé exclusivement au CM2. Les règles, non graduée et graduée, sont introduites respectivement au CP1 et CP2, le rapporteur l’est au CM1, le compas et l’équerre le sont au CE1, ce qui disqualifie les autres réponses.

- **Autotest 2**

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Des lignes courbes</th>
<th>Des droites parallèles</th>
<th>Des angles droits</th>
<th>Des cercles avec des rayons donnés</th>
<th>Des rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compas</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>Équerre</td>
<td></td>
<td></td>
<td>✗</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>Rapporteur</td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Règle</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Règle graduée</td>
<td></td>
<td></td>
<td></td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>

Commentaire partiel : Le tracé de lignes courbes ne demande pas d’instrument particulier.

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Des rectangles</th>
<th>Des rectangles</th>
<th>Des rectangles</th>
<th>Des rectangles</th>
<th>Des rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Équerre</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapporteur</td>
<td></td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Règle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Règle graduée</td>
<td>✗</td>
<td>✗</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commentaire partiel : Pour la construction d’un rectangle, quelques réponses possibles sont présentées. Elles correspondent à des propriétés différentes.

Le tracé des angles droits peut se faire soit avec l’équerre, soit avec le rapporteur.

La construction peut se fonder sur le tracé de côtés opposés de même longueur soit avec le compas, soit avec la règle graduée.
> **Autotest 3**

<table>
<thead>
<tr>
<th>Tâches</th>
<th>Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracer un cercle.</td>
<td>Compas</td>
</tr>
<tr>
<td>Tracer un cercle de 3 cm de rayon.</td>
<td>Compas, règle graduée</td>
</tr>
<tr>
<td>Tracer un carré.</td>
<td>PREMIÈRE RÉPONSE POSSIBLE : Règle graduée, équerre</td>
</tr>
<tr>
<td></td>
<td>SECONDE RÉPONSE POSSIBLE : Règle, rapporteur, compas</td>
</tr>
<tr>
<td>Mesurer les trois angles d’un triangle déjà construit.</td>
<td>Rapporteur</td>
</tr>
<tr>
<td>Tracer les diagonales d’un rectangle déjà construit.</td>
<td>Règle</td>
</tr>
<tr>
<td>Tracer les médianes d’un rectangle déjà construit.</td>
<td>Règle graduée</td>
</tr>
<tr>
<td>Mesurer la longueur d’un segment de droite.</td>
<td>Règle graduée</td>
</tr>
<tr>
<td>Tracer un demi-cercle.</td>
<td>Règle, compas</td>
</tr>
</tbody>
</table>

> **Autotest 4**

<table>
<thead>
<tr>
<th>Lignes</th>
<th>Noms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ligne droite</td>
</tr>
<tr>
<td></td>
<td>Ligne courbe</td>
</tr>
<tr>
<td></td>
<td>Ligne brisée</td>
</tr>
<tr>
<td></td>
<td>Ligne droite</td>
</tr>
<tr>
<td></td>
<td>Ligne courbe</td>
</tr>
</tbody>
</table>

> **Autotest 5**

<table>
<thead>
<tr>
<th>Figures</th>
<th>Noms des lignes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diagonales</td>
</tr>
<tr>
<td></td>
<td>Médiane</td>
</tr>
<tr>
<td></td>
<td>Médiane</td>
</tr>
</tbody>
</table>

> **Autotest 6**

<table>
<thead>
<tr>
<th>Angles</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Angle aigu</td>
</tr>
<tr>
<td></td>
<td>Angle droit</td>
</tr>
<tr>
<td></td>
<td>Angle obtus</td>
</tr>
</tbody>
</table>
Autotest 7

Le tableau suivant propose les tracés des pliages qui permettent de réaliser les figures indiquées. L’ordre des pliages à effectuer est indiqué à l’aide de numéros. Selon les cas, le pliage consiste à superposer des lignes ou des points repérables ou préalablement marqués. La règle graduée sert à s’assurer que 2 côtés ont la même mesure. On peut aussi utiliser à la place le compas.

<table>
<thead>
<tr>
<th>Figures</th>
<th>Tracé des pliages que tu fais</th>
<th>PREMIÈRES POSSIBILITÉS</th>
<th>AUTRES POSSIBILITÉS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un triangle isocèle</td>
<td>![2 1 3]</td>
<td>Rapporteur</td>
<td>Règle graduée</td>
</tr>
<tr>
<td>Un carré</td>
<td>![2 1]</td>
<td>Règle graduée</td>
<td>Équerre</td>
</tr>
<tr>
<td>Un losange</td>
<td>![3 2 6]</td>
<td>2 angles égaux</td>
<td>4 côtés de même longueur</td>
</tr>
<tr>
<td>Un triangle rectangle</td>
<td>![1]</td>
<td>4 côtés égaux</td>
<td>1 angle droit</td>
</tr>
</tbody>
</table>

PREMIÈRES POSSIBILITÉS

<table>
<thead>
<tr>
<th>Instrument(s) utilisé(s) pour vérifier</th>
<th>Propriété(s) utilisée(s) pour vérifier</th>
<th>Instrument(s) utilisé(s) pour vérifier</th>
<th>Propriété(s) utilisée(s) pour vérifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapporteur</td>
<td>2 angles égaux</td>
<td>Règle graduée</td>
<td>Diagonales perpendiculaires, sécantes en leur milieu et de même longueur</td>
</tr>
<tr>
<td>Règle graduée</td>
<td>4 côtés de même longueur</td>
<td>Équerre</td>
<td>Diagonales sécantes en leur milieu et perpendiculaires</td>
</tr>
<tr>
<td>Équerre</td>
<td>4 angles droits</td>
<td>Rapporteur</td>
<td>1 angle droit</td>
</tr>
</tbody>
</table>
Autotest 8

1. Le classement de ces figures selon leur nombre de côtés est le suivant :

<table>
<thead>
<tr>
<th>Nombre de côtés</th>
<th>Numéros des figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 – 7</td>
</tr>
<tr>
<td>4</td>
<td>3 – 4 – 6 – 8</td>
</tr>
<tr>
<td>5</td>
<td>2 – 5</td>
</tr>
</tbody>
</table>

2. Le tableau ci-dessous précise la nature de chaque figure, ainsi que les propriétés et les instruments qui te permettent de l’affirmer. Dans quelques cas, plusieurs possibilités sont mentionnées, d’autres sont également possibles.

<table>
<thead>
<tr>
<th>Numéros des figures</th>
<th>Nature des figures</th>
<th>Propriétés utilisées pour l’affirmer</th>
<th>Instruments utilisés pour l’affirmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Triangle équilatéral</td>
<td>3 côtés de même longueur</td>
<td>Règle graduée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 côtés de même longueur</td>
<td>Compas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 angles de même mesure</td>
<td>Rapporteur</td>
</tr>
<tr>
<td>2</td>
<td>Polygone irrégulier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Carré</td>
<td>4 côtés de même longueur et 4 angles droits</td>
<td>Règle graduée et équerre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 côtés de même longueur et 4 angles droits</td>
<td>Compas et rapporteur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numéro de la figure</th>
<th>Reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- **Étapes de la construction et instruments utilisés (les lettres des étapes renvoient aux lettres mentionnées dans la figure) :**

 a. Tracé du segment en reportant la longueur correspondante issue de la figure à reproduire : règle graduée.

 b. Tracé d’une droite perpendiculaire à une autre : équerre.

 c. Tracé du segment en reportant la longueur correspondante issue de la figure à reproduire : règle graduée.

 d. Tracé d’une droite perpendiculaire à une autre : équerre.

 e. Tracé du segment en reportant la longueur issue de la figure à reproduire : règle graduée.

 f. Tracé d’un arc de cercle dont le rayon est issu de celui de la figure à reproduire : compas.

 g. Tracé d’un arc de cercle dont le rayon est issu de celui de la figure à reproduire : compas.

 h. Désignation de l’intersection des 2 arcs de cercle et tracé des 2 derniers côtés.
Étapes de la reproduction et instruments utilisés (les lettres des étapes renvoient aux lettres mentionnées dans la figure) :

a. Tracé du segment en reportant la longueur correspondante issue de la figure à reproduire : règle graduée.
b. Tracé d’une droite perpendiculaire à une autre : équerre.
c. Tracé du segment en reportant la longueur correspondante issue de la figure à reproduire : règle graduée.
d. Tracé d’une droite perpendiculaire à une autre : équerre.
e. Tracé du segment en reportant la longueur issue de la figure à reproduire : règle graduée.

4. Les figures 2, 4, 5 et 8 ont des angles obtus.
Autotest 9

<table>
<thead>
<tr>
<th>Figure</th>
<th>Devinette</th>
<th>Construis-moi</th>
<th>Instruments que tu utilises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un triangle rectangle</td>
<td>J’ai 3 côtés et un angle droit.</td>
<td></td>
<td>J’utilise la règle pour tracer un segment [AB]. J’utilise l’équerre pour tracer la perpendiculaire à (AB) qui passe par A. J’utilise la règle pour tracer le segment [BC] où C est un point quelconque de la perpendiculaire précédente.</td>
</tr>
<tr>
<td>Un carré</td>
<td>J’ai 4 côtés de même longueur et 4 angles droits.</td>
<td></td>
<td>J’utilise la règle pour tracer un segment [AB]. J’utilise l’équerre pour tracer les perpendiculaires à (AB) qui passe respectivement par A et par B. J’utilise le compas pour reporter la distance AB sur les 2 perpendiculaires précédentes et déterminer les points C et D. J’utilise la règle pour tracer le segment [CD].</td>
</tr>
<tr>
<td>Un rectangle</td>
<td>J’ai 4 angles droits et les côtés opposés de même longueur.</td>
<td></td>
<td>J’utilise la règle pour tracer un segment [AB]. J’utilise l’équerre pour tracer la perpendiculaire à (AB) qui passe par A. J’utilise le compas pour tracer le point D, intersection du cercle de centre C et de rayon AB et du cercle de centre A et de rayon BC. J’utilise la règle pour tracer les segments [AD] et [CD].</td>
</tr>
<tr>
<td>Un triangle équilatéral</td>
<td>J’ai 3 côtés de même longueur et 3 angles de même mesure.</td>
<td></td>
<td>J’utilise la règle pour tracer un segment [AB]. J’utilise le compas pour tracer le point C, intersection des 2 cercles de rayon AB et de centres respectifs A et B. J’utilise la règle pour tracer les segments [AC] et [BC].</td>
</tr>
</tbody>
</table>
Autotest 10

L’autotest porte sur la figure ci-dessous.

![Diagramme de géométrie](image)

<table>
<thead>
<tr>
<th>Figures à déterminer</th>
<th>Réponses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 triangles rectangles</td>
<td>ADJ, CKI, PLJ et AEF</td>
</tr>
<tr>
<td>1 triangle équilatéral</td>
<td>IJC</td>
</tr>
<tr>
<td>1 carré</td>
<td>NMLD</td>
</tr>
<tr>
<td>4 rectangles</td>
<td>ABCD, EHGF, HBKI, NMLD</td>
</tr>
</tbody>
</table>

Commentaire : Le quadrilatère NMLD apparaît dans 2 lignes. Il est en effet un carré mais également un rectangle, comme tous les carrés. En effet, tout carré est aussi un rectangle puisqu’il possède 4 angles droits.

Le tableau suivant donne quelques indications sur les actions et les instrumentés mobilisés pour reproduire le triangle équilatéral IJC.

<table>
<thead>
<tr>
<th>Reproduction du triangle équilatéral</th>
<th>Instruments utilisés et actions réalisées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Je trace un point U.</td>
</tr>
<tr>
<td></td>
<td>Je prends la distance JC comme écartement du compas et je trace, avec le compas, le cercle de centre U et de rayon JC.</td>
</tr>
<tr>
<td></td>
<td>Soit V un point de ce cercle.</td>
</tr>
<tr>
<td></td>
<td>En conservant le même écartement du compas, je trace les 2 cercles de rayon JC et de centres respectifs U et V.</td>
</tr>
<tr>
<td></td>
<td>J’appelle W l’un des 2 points d’intersection de ces 2 cercles et je trace avec la règle les segments [UW] et [WV].</td>
</tr>
</tbody>
</table>
Autotest 11

Les constructions suivantes permettent de construire des angles de mesures respectives 90° et 45° à l’aide du compas et de la règle seulement.

a. Pour l’angle de 90° :

<table>
<thead>
<tr>
<th>Construction</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pour construire un angle de 90°, on va construire la médiatrice d’un segment. On trace une droite (d) et un point A sur (d). Avec le compas, on trace les points B et C de (d), tels que A soit le milieu du segment [BC]. On trace ensuite deux cercles de même rayon et de centres respectifs B et C qui se coupent en M et N. La droite (MN) est la médiatrice de [BC]. L’angle MAC est un angle droit ; il mesure 90°.</td>
</tr>
</tbody>
</table>

b. Pour l’angle de 45° :

<table>
<thead>
<tr>
<th>Construction</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pour construire un angle de 45°, on va construire la bissectrice d’un angle de 90°. On part d’un angle droit déjà construit. Avec le compas, on construit les points d’intersection M et N d’un cercle de centre A avec les côtés de l’angle droit. Deux cercles de même rayon et de centres respectifs M et N se coupent en P. La demi-droite [AP] est la bissectrice de l’angle droit NAM. L’angle PAN mesure donc 45°.</td>
</tr>
</tbody>
</table>

Le rapporteur permet de vérifier la mesure des angles construits. Ce livret rappelle la façon de placer le rapporteur pour mesurer les angles.
2. CORRIGÉS DES ACTIVITÉS

► Activité 1

Pour mémoire, voici quelques notes qu’un enseignant a rédigées pour travailler les triangles avec ses élèves.

Étatpe 1 : Donner l’exercice suivant aux élèves.

Consigne : Construis avec la règle et le feutre, librement sur ta feuille, un triangle quelconque qui n’a aucune propriété particulière.

N. B. : Les élèves doivent dessiner un « grand » triangle afin qu’il puisse être montré ensuite à toute la classe.

Étatpe 2 : Choisir les figures de quelques élèves. Les afficher et demander aux élèves de retirer les figures qui représentent des triangles particuliers.

Les élèves qui pensent avoir repéré un triangle particulier viennent valider leur hypothèse, devant la classe, avec les instruments collectifs.

Préparer quelques figures particulières à présenter à la classe si jamais aucun élève n’avait produit de triangle particulier.

Étatpe 3 : Donner l’exercice suivant aux élèves.

Consigne : Voici une planche de triangles numérotés. Indique parmi eux quels sont les triangles particuliers et indique les instruments que tu utilises.

- Réponses aux questions qui portent sur l’étape 1 :

 a. Le seul instrument que l’on demande aux élèves d’utiliser est la règle.

 L’approche que l’enseignant leur propose est une approche perceptive. En effet, pour vérifier qu’ils ne tracent pas de triangle particulier, ils ne disposent ni de compas ni de règle graduée (qui permet de comparer des longueurs de côtés) ni d’équerre (qui permet de vérifier la présence d’angle droit). L’approche instrumentée leur est donc interdite.
b. Il se peut que des élèves produisent des triangles particuliers, contrairement à ce que demande la consigne. Cette attitude peut provenir de la prédilection des représentations habituelles des triangles (qui sont parfois équilatéraux ou isocèles, avec l’un des côtés « horizontal »). Il se peut également que le hasard des tracés produise des triangles particuliers, comme des triangles rectangles par exemple.

■ Réponses aux questions qui portent sur l’étape 3 :

c. Pour déterminer la nature d’un triangle, les élèves vont devoir manipuler le compas ou la règle graduée afin de comparer les longueurs des côtés et l’équerre pour identifier des angles droits. Notons que la demande explicite d’utiliser les instruments place l’élève dans une approche instrumentée.

d. La modalité de travail la plus favorable est ici le travail par binôme (à 2). Il oblige en effet chaque élève à s’impliquer pour répondre aux sollicitations de son pair. Le travail en binôme lui impose d’échanger, de confronter ses réponses, de débattre. En cas de désaccord, chacun doit formuler ses idées, les argumenter pour convaincre son pair et intégrer des démarches qui ne sont pas les siennes.

Pour le type de travail demandé, le travail en groupe de 4 élèves peut être moins favorable. Certains élèves peuvent en effet peu s’impliquer, laissant aux dominants du groupe le soin de faire le travail.

Le travail individuel n’est pas adapté ici. En l’absence d’interaction possible, un élève peut se démotiver rapidement et cesser tout travail s’il est à cours d’idée ou se trouve bloqué.

Le travail collectif ne convient pas non plus dans cette phase de recherche. Tous les élèves ne pourront pas être sollicités. Ils peuvent manquer d’intérêt pour les solutions élaborées par leurs pairs et devenir passifs ou décrocher.

e. Pendant le travail des élèves, le rôle de l’enseignant est le suivant : il rappelle les consignes, recense les procédures des élèves et les erreurs qu’ils commettent ; il évalue les difficultés des apprenants, détermine les connaissances qui leur font défaut, évalue ce que les élèves ont compris ou n’ont pas compris.

Ces observations lui permettront de préparer le bilan collectif qui suivra et qui portera sur les points qu’il aura repérés pendant la phase de recherche des élèves. Elles lui permettront aussi de définir la remédiation dont bénéficieront certains élèves.

f. Pour organiser le bilan collectif, l’enseignant peut montrer à la classe le travail de quelques groupes d’élèves préalablement choisis. Les élèves expliquent leurs procédures, l’enseignant demande à la classe ce qu’ils en pensent et organise un débat entre élèves.

Pour soutenir l’attention des élèves, l’enseignant peut prévoir quelques affiches qui sont les agrandissements de quelques figures choisies de la planche (par exemple, le triangle équilatéral et le triangle rectangle).

Les élèves peuvent alors défiler au tableau avec les instruments de la classe pour mesurer les longueurs avec la règle graduée ou les comparer avec le « grand »
compas, ce qui leur permet de repérer des côtés de même mesure. De même, ils peuvent placer l’équerre de la classe sur les figures pour vérifier si les angles sont droits ou non.

g. La trace écrite porte sur les connaissances mobilisées dans l’exercice, ce qui peut donner par exemple :

- Pour reconnaître si un triangle est un rectangle, on recherche s’il possède un angle droit. Pour cela, on utilise l’équerre.
- Pour reconnaître si un triangle est isocèle, on recherche s’il possède deux côtés de même longueur. Pour cela, on utilise la règle graduée ou le compas.
- Pour reconnaître si un triangle est isocèle, on recherche si ses 3 côtés ont la même longueur. Pour cela, on utilise la règle graduée ou le compas.

► Activité 2

Rappelons l’exercice que donne un enseignant à ses élèves et son commentaire sur le support.

Exercice :

On te donne la figure suivante. Trouve dans cette figure les angles qui ont la même mesure 2 à 2.

![Figure](image)

Commentaire sur le support :

On peut donner aux élèves une figure de grande taille pour qu’ils puissent mesurer les angles avec le rapporteur sans prolonger les traits ou avec des traits déjà prolongés.

a. Les activités préparatoires à cette situation doivent porter sur deux contenus :

- La désignation des angles :

 L’élève doit savoir nommer les angles et en particulier savoir que son sommet est en position centrale dans sa désignation (l’angle ABC désigne ainsi un angle de sommet A).

 La maîtrise de la désignation des angles est un préalable à cette activité. Un élève qui ne l’a pas acquis ne pourra pas mémoriser ni communiquer les angles qui ont même mesure.
– La mesure des angles avec le rapporteur :

Le rapporteur est un instrument complexe dont il est nécessaire de rappeler la manipulation. Cette activité n’est pas en effet une situation d’apprentissage de l’utilisation du rapporteur.

Savoir mesurer un angle avec le rapporteur est indispensable pour résoudre cette situation. Un élève qui ne le saurait pas se retrouverait rapidement bloqué.

Pour travailler ces activités, l’enseignant peut afficher la figure agrandie de l’exercice qui servira de support visuel à la classe. Il peut ainsi alterner le travail collectif et de courts temps de recherche individuelle sur des consignes telles que nommer tel angle, repérer tel autre angle désigné par son nom et mesurer tel troisième angle. Les corrections peuvent être faites devant la classe par des élèves qui viennent au tableau et montrent les angles demandés ou la façon de placer le rapporteur et de mesurer les angles.

b. **Plusieurs étapes** peuvent permettre d’organiser le travail de la classe :

Étape 1 : Travail préparatoire sur la désignation des angles et l’usage du rapporteur ;
Étape 2 : Temps de recherche individuelle afin que les élèves puissent avoir des premiers résultats ;
Étape 3 : Travail en binômes pour confronter les réponses et élaborer une suite d’angles égaux 2 à 2 ;
Étape 4 : Premier bilan collectif : des élèves indiquent le nombre d’angles égaux qu’ils ont trouvé et leur stratégie de résolution, ce qui permet de relancer le travail ;
Étape 5 : Reprise du travail en binôme en intégrant les idées échangées ;
Étape 6 : Correction par l’enseignant en interaction avec les élèves. L’enseignant doit choisir des propositions d’élèves valides ou erronées, de façon à provoquer des débats. À chaque fois, il doit demander aux élèves comment ils ont procédé et la justification de l’égalité d’angles qu’ils ont établie.

c. **Les angles FCA et ACB ont la même mesure.** Plusieurs arguments peuvent être débattus avec les élèves :

– On peut adopter une approche perceptive et dire que ces angles ont même mesure car « cela se voit », puisque les angles sont adjacents donc faciles à comparer visuellement et que l’« écartement » des côtés semble équivalent pour les 2 angles ;
– On peut suivre une approche instrumentée, mesurer les angles avec le rapporteur et justifier ainsi l’égalité de leur mesure ;
– On peut suivre une approche déductive et expliquer que l’égalité des angles provient du fait que la diagonale (AC) du carré est également bissectrice de l’angle FCB.
d. **Les angles \(\text{CD}A \) et \(\text{CAD} \) n’ont pas la même mesure.** Plusieurs arguments peuvent être débattus avec les élèves :

- L’approche perceptive ne permet pas de conclure. Il semble probable que les angles aient des mesures proches mais il est difficile de décider si ces angles sont égaux ou non en s’appuyant sur une simple comparaison visuelle ;
- L’approche instrumentée est en revanche toujours possible. La mesure des angles avec le rapporteur montre ici que ces angles ne sont pas égaux ;
- Une approche déductive pourrait par exemple s’appuyer sur le fait que si ces deux angles étaient égaux, alors le triangle ACB serait isocèle de sommet principal C et donc on aurait : \(AC = CD \). Cela ne semble pas être le cas, même si pour en être sûr, il aurait fallu connaître explicitement les hypothèses de la figure.

▶ **Activité 3**

a. Les quadrilatères particuliers dont les diagonales vérifient toujours les contraintes données, sont :

- sécantes en leur milieu et de même longueur : *les rectangles* ;
- sécantes en leur milieu et perpendiculaires : *les losanges* ;
- sécantes en leur milieu, de même longueur et perpendiculaires : *les carrés* ;
- sécantes en leur milieu, de longueurs différentes et perpendiculaires : *les losanges qui ne sont pas des carrés* ;
- sécantes en leur milieu, de même longueur et non perpendiculaires : *les rectangles qui ne sont pas des carrés* ;
- sécantes en leur milieu et ni de même longueur, ni perpendiculaires : *les parallélogrammes qui ne sont ni des losanges, ni des rectangles* .

b. Les instruments nécessaires sont :

- la règle qui permet de tracer les segments ;
- l’équerre pour tracer des segments perpendiculaires ;
- la règle graduée ou le compas pour s’assurer que les diagonales ont le même milieu ou qu’elles sont de la même longueur.

▶ **Activité 4**

a. Les instruments susceptibles d’être fabriqués pour construire des triangles sont la règle, le compas et l’équerre. Il n’y a pas de matériel simple à fabriquer, sans aide extérieure, pour les instruments qui servent à mesurer, comme la règle graduée et le rapporteur.

b. Le tableau suivant recense, pour chaque instrument que l’on peut fabriquer, le matériel nécessaire, son procédé de fabrication, ainsi que ce qu’il permet de faire. Tu pourras le remplir avec tes élèves.
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Matériels de fabrication</th>
<th>Procédé de fabrication et utilisation</th>
<th>Actions possibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Règle</td>
<td>Feuille de papier blanc</td>
<td>Replier la feuille sur elle-même, de façon à faire correspondre très soigneusement 2 bords opposés. Réitérer l’opération plusieurs fois. On obtient ainsi une feuille pliée en accordéon, dont les bords sont assez solides pour pouvoir servir de règle.</td>
<td>Tracer une droite, une demi-droite ou un segment</td>
</tr>
<tr>
<td></td>
<td>Feuille de papier cartonné</td>
<td>Découper une bande de la feuille cartonnée et utiliser le bord (qui est droit par fabrication) pour tracer des traits.</td>
<td></td>
</tr>
<tr>
<td>Compas</td>
<td>Feuille cartonnée</td>
<td>Découper une bande de la feuille cartonnée. Trouer finement la bande cartonnée vers ses extrémités. Les trous correspondent respectivement au centre et à un point de la circonférence. On bloque le centre avec la pointe d’un premier crayon placé dans le premier trou. On loge la pointe d’un second crayon dans le second trou. On trace le cercle par pivotement de la bande autour de son centre, en profitant de la trajectoire réalisée par le second crayon.</td>
<td>Report de la distance entre les 2 trous de la bande Construction d’un cercle</td>
</tr>
<tr>
<td>Corde et un clou pour le tableau ou une punaise pour le cahier</td>
<td>Corde et un clou pour le tableau ou une punaise pour le cahier</td>
<td>On fixe une extrémité de la corde au clou si l’on est au tableau ou à la punaise si l’on travaille avec le cahier. On enroule la craie ou le crayon à l’autre extrémité de la ficelle. On trace le cercle en gardant la ficelle tendue et en tournant autour de la punaise ou du clou.</td>
<td>Report de la distance entre les extrémités de la ficelle Construction d’un cercle</td>
</tr>
</tbody>
</table>
c. Les étapes d’utilisation des instruments fabriqués dans les constructions indiquées sont les suivantes :

Triangle quelconque

![Triangle quelconque](image)

J’utilise la bande de papier pliée pour tracer les trois segments [AB], [BC] et [AC].

Triangle équilatéral

![Triangle équilatéral](image)

J’utilise la bande de papier pliée pour tracer un segment [AB]. Avec la ficelle et la punaise, je trace le point C, intersection des 2 cercles de rayon AB et de centres respectifs A et B. J’utilise la bande de papier pour tracer les segments [AC] et [BC].
TRIANGLE RECTANGLE

J’utilise la bande de papier pliée pour tracer un segment [AB].
Avec la feuille pliée je trace la perpendiculaire à (AB) qui passe par A.
J’utilise la bande de papier plié pour tracer le segment [BC] où C est un point quelconque de la perpendiculaire précédente.

► Activité 5

Pour concevoir une situation-problème :
– Tu te sutes par rapport au programme (curriculum) ;
– Tu identifies l’objectif de la leçon ;
– Tu identifies les compétences à développer chez l’apprenant au cours de la séquence ;
– Tu passes à la rédaction de l’énoncé de la situation-problème.

SITUATION DANS LE PROGRAMME : curriculum CE1 semaine 16 palier 3 (rectangle) et semaine 19 palier 4 (carré)

OBJECTIF :
– Construire un carré et un rectangle.

COMPÉTENCES À DÉVELOPPER CHEZ L’APPRENANT :
– Utilisation des conditions suffisantes liées au carré et au rectangle ;
– Utilisation des instruments de géométrie.

La démarche consiste à déterminer, à chaque étape de la construction, la ou les propriété(s) que l’on veut utiliser (par exemple, les côtés perpendiculaires et les côtés parallèles du carré et du rectangle) et d’en déduire les instruments nécessaires (par exemple, la règle et équerre pour tracer une parallèle et une perpendiculaire).

Nous te proposons d’élaborer une description des étapes de construction et les propriétés mobilisées pour la construction d’un carré et d’un rectangle.
Cette partie du livret t’a permis d’améliorer tes compétences en géométrie afin que les élèves connaissent mieux les objets géométriques et leurs propriétés, utilisent correctement le vocabulaire et s’approprient les instruments, leur utilité et leur manipulation.

Après avoir parcouru cette deuxième séquence du livret et traité les différentes activités proposées, fais ton bilan en répondant avec clarté et objectivité aux questions suivantes :

► 1. Quels sont les éléments de cette séquence qui t’ont aidé à renforcer tes compétences en géométrie ?

..
..
..
..
..
..
..

► 2. Qu’est-ce que tu appris du point de vue de la connaissance et de l’usage des instruments de géométrie suite à la lecture de ce livret ?

..
..
..
..
..
..
..

► 3. Que penses-tu améliorer pour enseigner la géométrie après t’être approprié cette séquence du livret (contenus, méthodes...) ?

..
..
..
..
..
..
..
4. Quelles difficultés as-tu rencontrées auprès de tes élèves dans la mise en œuvre des acquis de cette séquence durant les apprentissages?

..

..

..

..

..

..

..

..

5. Comment comptes-tu remédier à ses difficultés?

..

..

..

..

..

..

..

..

6. Que proposes-tu comme thèmes à aborder si, éventuellement, on conçoit d’autres livrets de mathématiques pour les enseignants du primaire?

..

..

..

..

..

..

..

..
RÉFÉRENCES
BIBLIOGRAPHIQUES

— (2005) ; *Les mathématiques au CM2*, Vanves, ÉDICEF.

Sitographie

Un site de fiches de préparation et d’outils pour la classe : www.edumoov.com

38 dictionnaires et recueil des correspondances, logiciel téléchargeable.
Mettre en œuvre efficacement la situation-problème et les activités géométriques à l'école primaire.